【研究紹介:国外学術誌掲載論文から】

日本人女性アスリートにおける低骨密度リスクファクターと エストロゲン受容体α遺伝子多型との関連性

小林 哲郎1), 黄 仁官2)

1) 日本体育大学大学院トレーニング科学系 2) 日本体育大学体育スポーツ科学系

掲載誌:

Tetsuro Kobayashi and Inkwan Hwang (2021). Association Between Low Bone Mineral Density Risk Factors and Estrogen Receptor α Gene Polymorphisms in Japanese Female Athletes, Women's Health Reports, 2(1): 11–19. doi: 10.1089/whr.2020.0106

Keywords:

triad risk factors, gene polymorphisms, competitive sports, collegiate athlete 三主徴リスクファクター,遺伝子多型,競技スポーツ,大学アスリート

論文概要

本研究の目的は、日本人女性アスリートにおける低骨密度リスクファクターが骨密度へ及ぼす影響はエストロゲン受容体 α (ER α) 遺伝子多型に依存するか調査することであった。280名の女性アスリートが本研究に参加した。初経年齢、月経周期、疲労骨折歴及び摂食障害歴は質問紙によって収集した。競技種目は持久、審美、水中、ボール、高負荷の5タイプに分類した。骨密度は DXA 法で測定し、ER α 遺伝子 PvuII 及び XbaI 多型は TaqManプローブ法によって解析した。重回帰分析では、競技種目、BMI、初経年齢、XbaI 多型が骨密度と有意に関連したが、疲労骨折歴及び月経周期は有意に関連しなかった。XbaI 多型 XX+Xx 型では競技種目及び BMI が骨密度と有意に関連した一方で、xx 型では競技種目、BMI 及び初経年齢が骨密度と有意に関連した。

この結果は、初経遅延を伴う xx 型のアスリートは低い骨密度を有することを示した。女性アスリートにおいて、持久、審美、水中型スポーツの参加及び低い BMI は低い骨密度と関連し、初経の遅延は $ER\alpha$ 遺伝子 XbaI 多型の xx 型を有するアスリートの骨密度に負の影響を与える可能性が示唆された。

Table 1. Influence of Low Bone Mineral Density Risk Factors and Estrogen Receptor α Gene Xbal Polymorphism on Total Body Bone Mineral Density (Kobayashi, T. and Hwang, I. (2021). Association between low bone mineral density risk factors and estrogen receptor α gene polymorphisms in Japanese female athletes より引用改編)

	All participants $(n = 280)$		XX + Xx genotype $(n = 85)$		xx genotype ($n = 195$)	
	β	p	β	p	β	р
Total body BMD						
Sports types	-0.421*	0.000	-0.434*	0.000	-0.436*	0.000
BMI	-0.276*	0.000	-0.308*	0.001	-0.275*	0.000
Age at menarche	-0.119*	0.016	-0.067	0.483	-0.146*	0.014
Prior stress fractures	-0.076	0.120	-0.015	0.867	-0.093	0.122
Menstrual cycles	-0.001	0.982	0.017	0.853	-0.002	0.977
ERa gene Xba I polymorphism	-0.128*	0.009				

^{*;} p < 0.05

BMD, bone mineral density; XX, homozygous dominant; Xx, heterozygous; xx, homozygous recessive.