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Chapter 1. General introduction  

 

1-1. Characteristics of muscle contraction 

Exercises such as resistance training and endurance training are known as the beneficial tool that maintains 

and/or improves physical activity levels in the sport performance or the health promotion (1, 2).  

Especially, the skeletal muscle assumes the important role during these physical activities. Muscles contract to 

perform appropriately movements such as walking, running, and lifting. Contractive properties of muscle are 

mainly divided into three types that are named as isometric (ISOs), concentric (CONs) and eccentric (ECs) 

contractions (3). These contractions have applied in several situations. For instance, ISOs is frequently used in the 

situation of re-habilitations because of without joint movement (Figure 1-1). CONs and ECs are also used in late 

phase of re-habilitations. In addition, these contractions are observed in exercise and training situations (4, 5). CONs 

and ECs are the behavior with joint movement (Figure 1-1). These produce the force as the muscle strength during 

change of the muscle length. 

ECs is known that length of muscle is passively stretched during contractions, while CONs produces the 

force by shortening of the muscle length. Specifically, ECs has the low stress to respiratory system (2) despite the 

highly exersional force among three contraction types (6, 7). Therefore, ECs is widely used in several fields such as 

re-habilitation, conditioning and promotion. 
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Figure 1-1. Types of the skeletal muscle contractions 

The skeletal muscle length is short during the concentric contractions. In the eccentric 

contractions, the skeletal muscle length is prolonged. ISOs is not change length of the skeletal 

muscle. Arrows indicate the direction of joint movement. 
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1-2. Excessive eccentric contractions induce muscle damage 

ECs contribute to improvement of muscle strength and/or muscular hypertrophy (4, 8), whereas 

it is reported that ECs causes skeletal muscle injuries (9, 10). In the previous report, experimental 

animals (rats) were passively applied ECs by divers joint angular velocity in their gastrocnemius 

muscles (4, 8, 10, 11). Positive effects such as increase of muscle strength and hypertrophy were 

induced by slow joint angular velocity (SLOW) ECs (4, 8). On the other hand, fast joint angular 

velocity (FAST) ECs induced negative effects such as functional and pathological damages of 

muscle (10-12). Hence, the joint angular velocity during ECs is one of a material factor whether ECs 

conducts positive or negative effects on the skeletal muscle. 

The injuries by ECs broadly termed as exercise induced muscle damage, which has some 

physiological and structural symptoms (9, 12-15). Especially in the physiological symptom, muscle 

strength deficit, decrease of joint range of motion (ROM), delayed onset of muscle soreness 

(DOMS) and increased creatine kinase (CK) activity are typically observed. Disorders of muscle 

strength and ROM are observed immediately after the exercise, that are approximately 50% 

decreased in both animal and human experiments (12, 16, 17). DOMS is characterized that the 
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expression of muscle soreness is observed from 24 hours of the exercise (9, 12, 17). However, the 

mechanism has been unclear that time course of symptoms are differently indicated. In the 

pathological observation, changes such as muscle fiber disarrangement are observed (14). 

Additionally, the expression of muscle repair associated proteins (Pax7, MyoD and myogenin) is 

also observed as the molecular events in recovery process of exercise induced muscle damage.  
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1-3. Contribution of neuromuscular system in the muscle contractions 

The nervous system plays an important role in the mechanism of skeletal muscle contractions. 

The nervous system is composed of two systems: central nervous system (CNS) and peripheral 

nervous system (PNS). Component of CNS is brain and spinal. On the other hand, PNS is originated 

from CNS (spinal) that PNS involves autonomic, sensory and motor neurons. Specifically, 

contractile activity of skeletal muscles is regulated by the motor neuron. To contract muscles, there 

are three important processes (18) (Figure 1-2). First and second process of PNS plays a bridging 

between the CNS and the muscle. Firstly, electrical signals are conducted the motor neuron as the 

action potential from CNS to the skeletal muscle (19) (Figure 1-2). Next, action potentials are passed 

the neuromuscular junction (NMJ) that is composed of presynaptic motor axon and postsynaptic 

skeletal muscle fiber (18, 20) (Figure 1-2). Action potentials are chemically transmitted to the 

skeletal muscle fiber. The chemical transmitter is termed the acetylcholine that is released from 

synapses (18). Finally, transmitted action potentials are propagated the skeletal muscle fiber by the 

excitation-contraction (E-C) coupling (18, 21) (Figure 1-2). Therefore, nervous systems and skeletal 

muscles are closely related in the process of the skeletal muscle contraction.  
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Figure 1-2. Mechanisms of muscle contractions 

Action potentials from brain are firstly conduct the nerve trunk: 1. They are transmitted the 

Figure 1-2 

2. Neuromuscular junction 

1. Nerve trunk 

3. Intra muscular fibers 

Action potentials 

Spinal cord 



 7 

neuromuscular junction: 2, and propagate intra muscular fibers in the skeletal muscle: 3. Black 

arrows indicate the direction of action potentials.  
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1-4. Neuromuscular abnormality affect to nerve and muscle tissues 

Nerve tissues are damaged by the several stresses such as acute and chronic injury or 

neurogenic diseases (22-25). It has been indicated that the nerve damage relates to functional and 

structural muscle disorders (25-28). Amyotrophic lateral sclerosis (ALS) is the typical muscle 

disorder due to motor neuron disease (25). In the experimental model of ALS mice, strength deficit 

and muscular atrophy was observed due to NMJ disarrangement, nerve degeneration and 

neurotransmitter inhibition in their hind limb muscle (25). Therefore, it has showed that despite the 

nerve is impaired, the skeletal muscle weakness and atrophy also induced. 

Mechanical stresses (compression, elongation, contusion and/or rupture) in the nerve lead the 

functional and structural muscle impairments (28, 29). Colak et al. evaluated whether the physical 

movement during the exercise induces compressed nerve damage by overuse of upper limb muscles 

(28). In their study, athletes (ice hockey player) are subjected that they frequently use the upper limb 

muscles in the situation of racket swing. Their innervation nerves of upper limb muscles such as 

axillary, musculocutaneous and radial nerves are assessed by to measure propagating time of action 

potentials. In the result, each nerve conductivity are impaired (6-13%) relative to not exercised 

subjects. Hence, nerves are subject to damage from respective stresses.  
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1-5 Effect of strenuous eccentric contractions in innervation nerve of skeletal muscle 

In a previous study, authors reported that the neuronal regeneration associated markers (p75 

neurotrophin receptor, growth associated protein 43 and glial cell derived neurotrophic factor, among 

other things) are expressed in intramuscular nerves and spinal motor neurons after muscle such as 

contusion (30). Therefore, it is indicated a possibility that the nerve damage is induced from the 

muscle injury. 

Unaccustomed ECs is a cause of the skeletal muscle injury as described above. There is the study 

whether ECs leads the nerve damage like functional and pathological impairments (16). In this study, 

sciatic nerve and gastrocnemius muscle of rat is subjected. The muscle is passively treated the FAST 

20 ECs (5 contractions ✕ 4 sets). Their sciatic nerves are functionally assessed by nerve conduction 

velocity (NCV) measurement after 3, 7 and 10 days. NCV is a assessment tool which values are 

decreased by neuronal disorders (28, 31, 32). NCV is significantly 21 % decreased on 7 days 

compared with not treated control group (Figure 1-3A). In addition, macrophage related protein 

(ED1) is markedly expressed that it is a marker for macrophages of the tissue damage. Also, loss of 

myelin protein zero (p0) is observed that p0 is the important component of the nerve (16).  

Hence, these results indicate that unaccustomed ECs induce not only skeletal muscle injury, 
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but also its innervation nerve injury in both animal and human studies.  
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Figure 1-3. Results of nerve conductivity impairment from ECs induced innervation nerve 

injury (modified from Lee et al. 2014). 

NCV was decreased after unaccustomed ECs in animal experiments. Black arrows indicate 
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the pathway of action potentials. ECs: eccentric contractions, NCV: nerve conduction velocity, 3D: 3 

days, 7D: 7 days, 10D: 10 days.  
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1-6. Objectives 

However, there are unclear points about physiological and/or pathological mechanisms of “ECs 

induced nerve injury”. Based on these backgrounds, objectives of this study are composed of three 

theses as follows. 

 

1. To measure musculocutaneous nerve conductivity after single bout of ECs in biceps brachii 

muscle. 

Nerve impairment was induced by high angular velocity ECs in animal experimental model. 

However, it has not cleared about ECs induced nerve impairment in the human experiment. 

Therefore, the purpose of this chapter is to evaluate musleocutaneous nerve conductivity after 

unaccustomed ECs. 

 

2. To evaluate whether repeated bouts of FAST ECs cause severe damage to the sciatic nerve in 

medial gastrocnemius muscle of rats. 

In the previous report, FAST ECs had been applied only one time. On the other hand, the 

skeletal muscle injury become more severe by repetitive ECs (33). Hence, there is the possibility 
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which severe nerve injury also lead by repetitive ECs. To evaluate nerve damage, rats are exercised 

FAST ECs that their sciatic nerves are analyzed by NCV measurement and microscopic observation 

as functional and pathological assessment. 

 

3. To investigate nerve latency and NCV of the sciatic nerve in athletes with a history of 

hamstring muscle strain injuries. 

Hamstrings strain injuries (HSI) is a sports injury. It is thought that a main contributing factor 

is due to ECs. Based on previous and present experiments, a hypothesis is suggested following: The 

innervation nerve is impaired in athletes with a history of muscle strain injuries. To assess nerve 

impairment, athletes are measured their NCV using the pulsed magnetic stimulator.  
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Chapter 2. Increases in M-wave latency of fast eccentric contraction produce 

musculocutaneous nerve damage 

 

2-1. Abstract 

Purpose: ECs induce muscle damage that is indicated by prolonged loss of muscle function and 

delayed onset muscle soreness. It is possible that ECs affect motor nerve, which is attributed to the 

prolonged decreases in force generating ability. The present study investigated the hypothesis that 

musculocutaneous nerve M-wave latency would be increased after maximal elbow flexor ECs 

resulting in prolonged loss of muscle force. 

Methods: Fifteen women performed 60 maximal ECs of the elbow flexors using their non-dominant 

arm. M-wave latency was assessed by the time taken from electrical stimulation applied the Erb’s 

point to the onset of M-wave of the biceps brachii before, immediately after, and 1-4 days after the 

ECs. MVC torque, ROM and expression of DOMS using numerical rating scale (NRS) were also 

assessed at the same time points.  

Results: Prolonged decreases in MVC torque (1 day: 54%, 4 days: 15%) and ROM (1 day: 32%, 2 

days: 22%), and increased NRS (peak: 4.2 out of 10) were evident after exercise (p<0.05). The 
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M-wave latency increased (p<0.01) from 5.8 ± 1.0 ms before exercise to 6.5 ± 1.7 ms at 1 day and 

7.2 ± 1.5 ms at 2 days after exercise for the exercised arm only. No significant changes in M-wave 

amplitude were evident after exercise.  

Conclusion: The increased latency suggests a deficit in motor nerve function, and could be 

associated with efferent nerve damage induced by eccentric contractions.  
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2-2. Introduction 

ECs induces muscle damage indicated by a prolonged loss of muscle strength and ROM, 

development of DOMS, and increases in muscle proteins in the blood such as creatine kinase 

activity (34, 35). Histological alterations are also found after ECs in contractile apparatus at z-line, 

A-band, transverse (t)-tubule, triads and terminal cisternae of sarcoplasmic reticulum (SR), and 

extracellular matrix (14, 36). It has been shown that E-C coupling failure is associated with the 

decreases in muscle strength after ECs (37).  

Muscle fiber conduction velocity (MFCV) is indicative of action potential conduction along a 

muscle, which has been shown to be decreased after ECs (38). Previous study showed 27% decrease 

in muscle fiber conduction velocity of biceps brachii during maximal voluntary isometric 

contractions at 2 hours after 50 maximal ECs of the elbow flexors. The same authors reported that 

MFCV during maximal voluntary isometric contractions was decreased 12% at 2 hours after 60 (20 

× 3 sets) maximal ECs of the elbow flexors (39). They stated that the decrease in MFCV was 

associated with loss of sarcolemmal excitability, and might indicate an impairment of motor nerve 

function. 
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To assess motor nerve function, NCV, M-wave latency and M-wave amplitude are often used 

(28). NCV is measured by the time between the electrical stimulation and the onset of M-wave (40), 

and has been used to examine nerve disorders such as neuropathy and neural muscular atrophy in 

previous studies (28, 41). Kaplan compared the latency of median and ulnar nerves between control 

and neuropathy groups, and showed that the motor terminal latency was longer (ulnar; 33%, medial; 

41%) for the neuropathy than control group. It was reported that the latency of the median nerve was 

38% longer for neuronal disease patients such as Crow-Fukase syndrome (42), and the femoral nerve 

latency prolonged by 15% for diabetes patients when compared with non-diseased population (43). 

These indicate that an increase in the latency is related to an impairment of motor nerve function.  

Lee et al. recently reported that NCV decreased 21% at 7D after 20 fast velocity (180°/s) 

eccentric contractions of the plantar flexors in rats, and p0 that is an indicator of myelin sheath 

damage, increased in the sciatic nerve after the eccentric contractions (16). This suggests that ECs 

could damage nerve tissue; however, no previous studies have investigated the effect of eccentric 

exercise on efferent nerve in humans. 

The biceps brachii is innervated by the musculocutaneous nerve (MsN), and MsN latency was 

measured as the conduction time from the onset of the stimulus to the onset of the muscle action 
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potential (44). The present study investigated MsN latency of biceps brachii in responses to eccentric 

exercise of the elbow flexors. It was hypothesised that MsN latency would be increased after 

eccentric exercise of the elbow flexors.  
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2-3. Methods 

Participants 

Fifteen young women (age: 24.6 ± 3.5 y, height: 160.3 ± 5.3 cm, body mass: 55.3 ± 5.5 kg) 

were recruited for this study. Their average ± standard deviation (SD) upper arm length measured by 

the distance between the acromion and lateral epicondyle was 28.4 ± 1.3 cm. They had not been 

participating in any regular resistance training prior to this study. The participants were requested to 

avoid any interventions such as massage and stretching during the experimental period. They were 

given detailed explanation of the study protocol before participation, and signed an informed consent 

form. The study was approved by the Ethics Committee of the Nippon Sports Science University 

(012-H01). The sample size was estimated by a power analysis (G power, Heinrich-Heine University 

of Dusseldorf) by setting the effect size as 0.25, α level of 0.05 and power of 0.8 for the possible 

latency changes after eccentric exercise, and it was shown that 15 participants were required. 

 

Experimental protocols  

All participants performed maximal eccentric exercise of the elbow flexors using their 

non-dominant arms, and the dominant arms were assigned to control (CNT) in which the latency 
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measurements were taken without eccentric exercise. The dependent variables included MVC torque, 

ROM of the elbow joint, muscle soreness of the elbow flexors assessed by a NRS, M-wave latency 

after electrical stimulation and maximal M-wave amplitude of biceps brachii. These measures except 

muscle soreness were taken immediately before, immediately after, and 1 to 4 days (1D - 4D) after 

eccentric exercise. Muscle soreness assessment was not included immediately after exercise, but was 

taken at all other time points. These measurements were performed in a room maintained at 

26-28°C. 

ECs protocol 

Each participant was seated on the chair of an isokinetic dynamometer (Biodex Multi-Joint 

System 3, New York, USA), and the non-dominant arm was set at a shoulder joint angle of 45° 

flexion and the elbow joint was aligned with the rotation axis of the isokinetic dynamometer, while 

the lever arm of the isokinetic dynamometer was secured to the subject’s wrist in a supinated 

position. The exercise consisted of 10 sets of 6 maximal voluntary eccentric contractions of the 

elbow flexors at a constant velocity of 90°/s for the ROM from 90° flexion to 0° (full extension) (12). 

The participants were verbally encouraged to maximally resist throughout the ROM for 1s, and after 

each contraction, the isokinetic dynamometer returned the arm to the 90° flexed position at a 
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constant velocity of 30°/s, creating a 3-s passive recovery between contractions. The rest period 

between sets was 50 s. Torque produced during eccentric contractions was saved in a computer 

connected to the isokinetic dynamometer, and peak torque and work were obtained later. 

 

Maximal voluntary isometric contraction (MVC) torque  

MVC torque was measured on the same apparatus and positioning as those described for the 

eccentric exercise. Subjects performed two 3-s MVC at 90° elbow joint angle with a 15-s rest 

between contractions (12). Higher peak torque of the two contractions was used for further analysis. 

 

Elbow range of motion (ROM) 

To examine the ROM of elbow joint, two elbow joint angles (extended and flexed joint 

angles) were measured using a plastic goniometer by the same investigator once for each. The 

extend joint angle was recorded when each participant attempted to fully extended the joint, with the 

elbow held at the side and the hand in supination, and the flexed joint angle was determined when 

the participant attempted to fully flex the joint with the hand in supinated position of the elbow joint 
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was fully extended (12). The ROM was determined as the difference between the two angles 

(extended angle – flexed angle). 

 

Muscle soreness 

Muscle soreness was assessed using a numerical rating scale (NRS), where 0 indicates “no 

pain”, and 10 is “worst pain imaginable” (45). Each participant was asked to indicate the pain 

intensity on the scale when the investigator palpated the mid-belly of biceps brachii (9 cm from 

cubital fossa) using a thumb while each participant relaxed the arm at the side while standing 

(natural position). All muscle soreness assessments were made by the same examiner to ensure that 

the same pressure was applied on biceps brachii. After applying pressure three consecutive times, the 

examiner asked each participant to rate the soreness level. 

 

M-wave latency and amplitude 

Since M-wave latency has been reported to be affected by body temperature (40), the skin 

temperature of the upper extremity was checked using a thermal imager (TVS-200 NEC, Tokyo, 

Japan), and the room temperature was kept at 26-28°C throughout the measurements (28). The 
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musculocutaneous nerve was stimulated (pulse duration 10 ms) by a monopolar surface electrode 

connected to an electric stimulator (SEN-3301, Nihon Kohden, Tokyo, Japan) combined with an 

isolator (ML408, AD-instruments, Japan), and the maximal stimulus current was 14-18 mA 

according to the instruction in the Manual of Nerve Conduction Studies. M-wave of biceps brachii 

muscle contraction was induced by the electrical stimulation at the Erb’s point (supraclavicular 

fossa). M-wave latency was recorded with monopolar surface electrode placed at the mid-belly of 

the biceps brachii long head. Data acquisition and analysis were performed by a Power Lab Chart 7 

(AD instruments, Australia). The placement of the electrode and a reference electrode were marked 

by a permanent marker to ensure that their locations did not change over time. M-wave latency was 

calculated from the start of the electrical stimulation to the starting time of the fast negative peak of 

M-wave (Figure 2-1). Starting point of M-wave was defined as above the mean ± 2 SD of the base 

line value (46). The maximal amplitude of M-wave was determined as the negative peak to the 

positive peak amplitude. Based on the value obtained from the control arm of all participants (n=15) 

across measures taken at six time points from before to four days after exercise, the coefficient of 

variation (CV) for the latency measurement was found to be 11%, and intra-class correlation 

coefficient was 0.89.  
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Figure 2-1. Measurement of muscleocutaneous nerve M-wave latency 

Nerve stimulation was applied the space between sternocleidomastoid muscle and scalene. 
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Black arrows indicate the pathway of action potentials.  
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Statistical analyses 

Changes in MVC, ROM and muscle soreness (NRS) over time were analysed by a one-way 

analysis of variance (ANOVA). Changes in M-wave latency and M-wave amplitude over time were 

compered between exercised and non-exercised (control) arms by a two-way repeated measures 

ANOVA. When a significant time effect or interaction effect was found, a Bonferroni’s multiple 

comparison was followed as a post-hoc test. A significance level was set at p < 0.05. All values are 

expressed as means ± SD.  
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2-4. Results 

MVC Torque 

MVC torque decreased (p<0.05) by 54 ± 14% of the pre-exercise level at immediately after 

exercise, and remained lower than the baseline at 1D (32 ± 25%), 2D (26 ± 24%), 3D (18 ± 22%) 

and 4D days (15 ± 31%) after exercise (Figure 2-2A). 

 

ROM 

ROM decreased from the pre-exercise value at immediately (32 ± 27%) to 2D (22 ± 15%) 

after exercise, but returned to the baseline at 3D post-exercise (Figure 2-2B). 

 

Muscle soreness  

Muscle soreness developed at 1-3D after exercise, and peaked (4.2 ± 1.6 out of 10) at 2D 

post-exercise (Figure 2-2C).  

 

M-wave Latency and amplitude 

Pre-exercise M-wave latency was the same between arms (5.8 ± 1.0 ms), but a significant 
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interaction effect was found after exercise (Figure. 2-3A). Only for the exercised arm, M-wave 

latency increased at 1D (6.5 ± 1.7 ms) and 2D (7.2 ± 1.5 ms) after exercise (p<0.05). All participants 

showed a maximum increase in the latency at 1D or 2D after exercise from the baseline value by 

43-88%. No significant changes in M-wave amplitude (baseline: 9.6 ± 4.7 mV) were observed over 

time for either arm (Figure. 2-3B).  
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Figure 2-2. Muscles functions after unaccustomed ECs  

Decreased MVC (A) and ROM (B) were indicated immediately after ECs. Significant increase 

of muscle soreness (C) was shown on 2D. Pre: Before exercise, Post: After exercise, 1D: 1 day, 2D: 

2 days, 3D: 3 days, 4D: 4 days.  



 32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Muscleocutaneous Latency (ms)

Control limb

ECs limb

*
*

Normal

0

2

4

6

8

10

Pre Post 1D 2D 3D 4D

Impairment

Figure 2-3 

M-wave amplitude (mv)

7.0	

11.0	

15.0	

19.0	

23.0	

27.0	

1	 2	 3	 4	 5	 6	

Control limb

ECs limb

Pre Post 1D 2D 3D 4D

High

Low

27

24

19

15

11

7

A

B



 33 

Figure 2-3. Results of latency and amplitude after unaccustomed ECs. 

NCV was significantly increased on 1D and 2D after unaccustomed ECs: A. * p<0.05 vs pre 

M-wave amplitude was not changed between CNT limb and ECs limb: B. Pre: Before exercise, Post: 

Immediately after exercise, 1D: 1 day, 2D 2 days, 3D: 3 days, 4D: 4 days.  
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2-5. Discussions 

The present study tested the hypothesis that M-wave latency of biceps brachii in response to 

electrical stimulation would be prolonged after eccentric exercise of the elbow flexors resulting in 

muscle damage. The changes in MVC torque, ROM and muscle soreness (Figure 2-2) indicate that 

muscle damage was induced by the exercise. M-wave latency significantly increased at 1D and 2D 

after exercise without changes in M-wave amplitude when compare with the pre-exercise value 

(Figure 2-3), which supported the hypothesis. 

In the present study, female participants were recruited, because I wanted to have participants who 

had not performed resistance training, and it was easier for us to find such participants in females. 

Although the menstrual cycle of the participants was checked, I did not measure serum hormones to 

determine the exact cycle. The response to eccentric exercise might differ at the phases (e.g. 

follicular, ovulating and luteal), but the effect of menstrual cycle on eccentric exercise-induced 

muscle damage is still controversial (47-49). It is possible that NCV is affected by body temperature; 

however, the effect of menstrual cycle on NCV has not been examined previously. It is known that 

body temperature fluctuates in menstrual cycle about 0.5°C (Mouzon et al. 1984) which may affect 

NCV. In my experiment, the skin temperature of the participants were monitored using a thermal 
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imager, and the skin temperature was consistent around 36.0°C during the NCV measurement 

among subjects, and no significant difference was found between days for the same participants. 

Furthermore, no significant changes in NCV were observed for the non-exercise arm (Figure 2-3A). 

Thus, it seems unlikely that the menstrual cycle affected the changes in NCV found for the exercised 

arm.  

The magnitude of the changes in MVC torque and ROM after eccentric exercise was similar to 

those reported in the previous study in which a similar eccentric exercise of the elbow flexors was 

performed by untrained participants (12). Regarding muscle soreness, the present study used NRS, 

instead of a visual analog scale that most of previous studies used, but the time course of the changes 

in muscle soreness and its magnitude appear comparable to those of the previous studies (12, 50, 51). 

Collectively, it seems reasonable to assume that moderate muscle damage was induced by the 

eccentric exercise. 

The most important finding of the present study was that M-wave latency increased at 1D 

(12%) and 2D (24%) after exercise without changes in the M-wave amplitude (Figure 2-3). This was 

the first study to show the effect of eccentric exercise-induced muscle damage on the M-wave 

latency. However, Colak et al. reported a delay of M-wave latency in ice hockey players such that 
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M-wave latency of the dominant arm was 4.39 ms, which was significantly longer than that of 

sedentary control individuals (4.12 ms). They discussed that the MsN was compressed by 

surrounding muscles such as coracobrachialis and biceps brachii, which increased the latency. The 

baseline M-wave latency in the present study was 5.6 ± 1.5 ms, which was more than 1 ms longer 

than that of the previous study (28). Buschbacher et al. reported that average M-wave latency of 

healthy male and female adults was 5.1 ± 0.4 ms, which was comparable to that of the present study 

at baseline (52). M-wave latency and NCV are influenced by the length of limb and age, as well as 

environmental temperature and the electrode position (40, 44). Thus, the difference in the M-wave 

latency among studies may be explained by some differences in these factors. It is important to note 

that the M-wave latency measurements were performed in the same temperature, electrode sites and 

position between days in the present study, and no significant changes in the M-wave latency were 

found for the non-exercise arm (Figure 2-3A). Thus, it seems reasonable to assume that the 

significant increases in the M-wave latency were due to the eccentric exercise that induced some 

symptoms of muscle damage. 

Tsur and Ring evaluated brachial plexus nerve latency in stroke patients whose shoulder 

muscles were paralysed, and showed that the axillary nerve M-wave latency of the paralysed 
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shoulder was 38% longer than that of the normal side, and the M-wave amplitude was decreased by 

62% for the paralysed side than normal side. In contrast, the M-wave amplitude did not significantly 

change after eccentric exercise in the present study (Figure 2-3B). Nerve injuries are classified into 

three categories; neurapraxia, axonotmesis and neurotmesis (53, 54). It was stated that if nerve 

damage occurred only in myelin sheath (neurapraxia), M-wave latency increased without apparent 

change in M-wave amplitude, but if axonal damage occurred, amplitude of nerve impulse was 

decreased (53). Thus, it is possible that the eccentric exercise in the present study induced myelin 

sheath damage but not axonal damage. Lee et al. reported that p0, an indicator of myelin sheath 

damage, increased in the sciatic nerve after 20 fast velocity (180°/s) ECs of the plantar flexors in rats. 

Thus, it is possible that ECs induced myelin sheath damage in the present study.  

It should be noted that the M-wave latency returned to the baseline at 3D after exercise 

(Figure 2-3A) when MVC was still decreased from the baseline (Figure 2-2A). The magnitude of the 

increase in the latency (1D post-exercise: 12%, 2D post-exercise: 24%) was smaller than the 

magnitude of decrease in MVC (32%, 26%, respectively). These suggest that the nerve repair 

process may be faster than skeletal muscle regeneration. It is known that nerve conduction is 

changed by extension and compression of the nerve, which is referred to as transient nerve 
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conduction block (29). Previous studies have shown that ECs induce structural changes in various 

tissues (vessel, extra-cellar matrix, nerve) surrounding muscle fibres (9). Since nerve axons are 

surrounded by connective tissue, it is possible that a temporary nerve conduction block is induced by 

ECs.  
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2-6. Conclusions 

In conclusion, the present study found that latency of biceps brachii muscle increased 1 - 2D 

after eccentric exercise of the elbow flexors by 12-24%. It seems likely that motor nerve damage 

was associated with the increased M-wave latency, but it is not clear from the present study what 

kind of nerve damage was induced by eccentric contractions. Further studies are necessary to 

investigate the effect of eccentric contractions on efferent as well as afferent nerves including 

histological and physiological changes.  
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Chapter 3. Repeated bouts of fast eccentric contraction produce sciatic nerve damage in rats 

 

3-1. Abstract 

Introduction: I evaluated sciatic nerve impairment after ECs in rat medial gastrocnemius muscle 

(MG). 

Methods: Wistar rats were randomly assigned to different joint angular velocity: 180°/s (FAST), 

30°/s (SLOW), or CNT. FAST and SLOW groups were subjected to multiple (1-4) bouts of 20 (5 

reps, 4 sets) ECs. NCV and isometric tetanic ankle torque was measured 24 h after each ECs bout. I 

also assessed nerve morphology. 

Results: After 4 ECs bouts, NCVs and isometric torque in the FAST group were significantly lower 

than those in the CNT (NCV: 42%, torque: 66%; p<0.05). After 4 bouts, average nerve diameter was 

significantly smaller in the FAST group (CNT: 2.39 ± 0.20 μm vs. 2.69 ± 0.20 μm and SLOW: 2.93 

± 0.24 μm; p<0.05) than that in other two groups 

Conclusion: Chronic ECs with high angular velocity induce serious nerve damage.  
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3-2. Introduction 

ECs involve the forcible lengthening of activated muscles. In particular, unaccustomed ECs 

induce strength loss, muscle soreness, sarcolemma disruption, and/or activation of muscle 

degradation signals (11, 12, 14, 15). Histological changes have also been demonstrated in myofibrils, 

the extracellular matrix, and triads of the cytoplasmic membrane system (55, 56). 

Recently, Lee et al. examined the effects of a single bout of ECs on the sciatic nerve in a rat 

model of ECs induced muscle damage (16). They used ECs with 2 different joint angular velocities 

(180°/s: fast and 30°/s: slow). Twenty (5 ✕ 4 sets) acute ECs were applied to the MG of the rats. The 

isometric tetanic ankle torque significantly decreased on 1D to 7D after ECs in the FAST group. 

They also observed a significant decline (21%) in NCV, indicating a nerve disorder in the fast group 

only. In addition, loss of myelin structural protein, p0, and an increase in a macrophage-related 

protein: ED1 were detected by western blotting analysis. In the slow group, ECs did not induce any 

apparent damage in the sciatic nerve. They concluded that acute ECs with fast angular velocity 

induce transient damage not only in the muscle but also in the innervating nerve (16).  

In general, overuse injuries are thought to result from the accumulation of microtraumas (28). 

For example, Colak et al. reported that nerve conductive function is impaired due to nerve 
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compression by a repetitive racket-swinging motion. According to their data, the brachial plexus 

nerves become entrapped and damaged in active high-level ice hockey players (28). Apparently, the 

brachial plexus nerves (axillary, musculocutaneous, and radial) become strangulated by surrounding 

muscles. Lee et al. reported that parameters indicating nerve damage (i.e. NCV, loss of p0 and 

increased ED 1) were observed on 7D post-ECs, and that all parameters had returned to normal on 

10D. Although these results indicate that a single bout of ECs induces temporary sciatic nerve 

damage, the acute response is not always reflected by chronic adaptation (16). In this study, I tested 

whether repeated bouts of ECs cause severe nerve damage, as observed in overuse injuries. Because 

nerve injuries are frequently induced by repetitive stress (29, 57), I hypothesized that repeated bouts 

of ECs seriously impair nerve structure and function. 

The aim of the present study was to evaluate whether repeated bouts of MG maximal ECs cause 

severe damage (e.g., axonal damage) to the sciatic nerve. To evaluate nerve damage, I measured the 

NCV of the sciatic nerve for functional assessment. Morphological examination of nerve fiber size 

and myelin thickness was also performed with an electron microscope.  
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3-3. Methods 

Animal care 

Fifty-four male Wistar rats (9 weeks old) were purchased from CLEA Japan (Tokyo, Japan). 

All rats were reared separately in ventilated cages and supplied with water and food. The room 

temperature was maintained at 22°C to 24°C, with a 12-h light/dark cycle. Rats were anesthetized 

with isoflurane for torque measurement and ECs training. All experimental procedures were 

approved by the ethical committee of Nippon Sport Science University (permit number 012-A03). 

 

Experimental design 

Wistar rats were divided into 3 groups: fast (180°/s) joint angular velocity ECs group (FAST, n 

= 24), slow (30°/s) joint angular velocity ECs group (SLOW, n = 24), and non-treated control (CNT, 

n = 6). To assess changes in NCV over time, 24 rats in the FAST and SLOW groups were divided 

into 4 multiple-EC-bout groups (1, 2, 3, and 4 bouts; 20 contractions per bout, n = 6 for each group). 

Animals in the 4-bout groups were tested with isometric tetanic ankle torque. Two additional 

animals were assigned to 4 bouts of ECs and used for morphological observation of the sciatic nerve. 

The experimental time schedule is described in Figure 3-1.  
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Figure 3-1.   Experimental time schedule 

ECs were divided into 1 to 4 bouts and NCV was measured 24 h after ECs. Isometric tetanic 

torque and nerve morphology were assessed in the 4-bout group. ECs: Eccentric contractions, NCV: 
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Nerve conduction velocity  
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ECs protocol 

The method used to administer ECs was similar to that described previously (11, 16). Briefly, a 

maximal tetanic contraction was electrically induced in MG of anesthetized rats, as described in 

“isometric tetanic ankle torque assessment”. During contraction, the right ankle joint was 

simultaneously dorsiflexed. The range of dorsiflexion was from 90° to 135° (range of motion: 45°) 

in both the FAST and SLOW groups. One bout of ECs consisted of 20 contractions (5 contractions, 

4 sets) and the interval between each set was 5 min, as reported previously (58). Each ECs bout (20 

contractions) was applied every 2D for repeated bouts groups. The total number of contractions was 

40 for 2 bouts (1D and 3D), 60 for 3 bouts (1D, 3D and 5D), and 80 for 4 bouts (1D, 3D, 5D and 

7D) (Figure 3-1). 

 

Isometric tetanic ankle torque assessment 

Maximal isometric tetanic ankle torque was measured in FAST and SLOW 4-bout groups the 

day after ECs were administered (Figure 3-1). The measurements were performed at 4 time points 

consisting of pre-ECs, 2D, 4D, and days 6 (6D). In the present study, I sequentially measured 

isometric tetanic torque in only those receiving 4 bouts. The detailed protocol for isometric torque 
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measurement shown below is essentially the same as that used in a previous study (16). 

Isoflurane was used as an inhalant analgesic (aspiration rate: 450 mL/min, concentration: 

~2.2%). The right ankle joint was positioned at 90°, and the extended right knee was fixed. A full 

activation of the MG was electrically induced (pulse duration: 0.4 ms, frequency: 100 Hz, intensity: 

~35 V). Surface skin electrodes (7.5 mm × 7.5 mm; Vitrode V, Nihon Kohden, Japan) were 

connected to an electric stimulator isolator (Nihon Kohden Japan). To avoid redundant muscle 

responses (e.g., hypertrophy and injury), the maximum torque was averaged over 3 contractions. 

 

Sciatic NCV examination 

NCV assessment was conducted as recently described (16). NCV was analyzed using distance 

and time differences in proximal latency (PL) and distal latency (DL) in a manner similar to that 

described previously (16). PL and DL were detected as the M-wave response of the MG and 

generated with electrical stimulation at the proximal and distal nerve points. PL was designated as 

the time from the branching point of the sciatic nerve to the MG, whereas DL was defined as the 

time from the branching point of the tibial nerve to the MG. The sciatic nerve was electrically 

stimulated using a hook-type stainless-steel electrode (EKM 2-5050; Bioresearch Center, Tokyo, 
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Japan) connected to an electric stimulator and isolator (SEN-3301, SS-104 J; Nihon Kohden, Tokyo, 

Japan). The needle electrode was used for recording of induced M-wave (SS-104 J, Nihon Kohden). 

Data acquisition and analyses were performed using Power Lab Chart 7 (AD Instruments, Australia). 

 

Nerve fiber observation with electron microscopy 

Analysis of nerve fiber diameter was conducted after 4 bouts of ECs in the FAST, SLOW, and 

CNT groups. The sciatic nerve was observed using a scanning electron microscope (Quanta 3D 

FEG; FEI, Netherlands), as previously described (59). Rats were perfused through the left ventricle 

with saline and a fixative (2% paraformaldehyde, 2.5% glutaraldehyde, and 0.1 M phosphate buffer 

[pH 7.4]). After chemical fixation, the sciatic nerve was dissected 2 mm from the origin of the spinal 

cord. After immersion fixation, nerve samples were placed in a solution containing 2% osmium 

tetroxide and 1.5% potassium ferrocyanide in 0.1 M phosphate buffer at 4°C. Then, nerve samples 

were washed 3 times with distilled water and immersed in 1% thiocarbohydrazide solution for 1 h, 

soaked in 2% osmium tetroxide in distilled water, washed 3 times with distilled water, stained with a 

solution of 4% uranyl acetate dissolved in a 25% methanol solution overnight for contrast 

enhancement, and then washed with distilled water. The specimens were dehydrated using a graded 
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ethanol series (25%, 50%, 70%, 80%, 90%, and 2 rounds of 100%) for 10 min. Specimens were 

embedded in epoxy resin (Epon 812; TAAB, England) and polymerized for 72 h at 60°C. Treated 

nerve samples were collected from a completely flat portion of the specimen for use in scanning 

electron microscopy analyses as material contrast images. The blocks were cut into 1.5 mm × 1.5 

mm squares and set on the sample holder for imaging. Images were captured using the ImageJ 

software package (NIH, Maryland, USA). Eight representative fields of view (x2500 and x5000) 

were randomly chosen within whole specimens. The number of nerves examined was: 418 in the 

CNT group, 379 in the SLOW group and 479 in the FAST group. Nerve fiber diameter for each 

nerve fiber was calculated as the mean value of the largest and smallest diameters (60). Myelin 

thickness for each nerve fiber was obtained by subtracting the axon diameter from the fiber diameter 

(61). Mean values for fiber diameter and myelin thickness in each group were averaged from all 

examined nerve fibers and myelin sheath.  

 

Statistical analyses 

All values are expressed as mean ± SD. One-way ANOVA was used to compare body mass, 

muscle wet weight, and results of morphological analysis of nerve fiber diameter (CNT vs. SLOW 



 50 

vs. FAST). Two-way ANOVA was used to evaluate changes in isometric tetanic ankle torque. Torque 

was measured over time in the SLOW and FAST groups. When a significant time effect or 

interaction effect was found, Bonferroni’s multiple comparison was used as a post-hoc test. NCV 

values were assessed by Dunnet analysis to make comparisons between each assigned contraction 

group and the CNT group (62, 63). The significance level was set at α = 0.05. All values are 

expressed as means ± SD. Statistical analyses were conducted with SPSS version 22 (IBM Japan, 

Tokyo, Japan). 
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3-4. Results 

Body weight and muscle wet weight 

In the FAST, SLOW, and CNT groups, no significant differences were observed in body 

weight or in the weight of the soleus or plantaris muscles after 4 bouts of ECs. The weight of the 

MG was significantly lower in the FAST group than in the CNT group (Table 3-1). However, no 

significant differences were observed between the CNT and SLOW groups (Table 3-1).  
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Table 3-1. Changes in body weight and muscle mass after 4 bouts of ECs 

 CNT (n = 6) SLOW (n = 6) FAST (n = 6) 

Body weight (g) 294.6 ± 5.0 289.3 ± 8.3 291.1 ± 7.3 

Soleus (mg) 112.4 ± 12.5 115.9 ± 12.4 115.3 ± 7.2 

Plantaris (mg) 295.5 ± 13.5 299.6 ± 12.7 285.8 ± 31.1 

Gastrocnemius (mg) 1,387.0 ± 62.4 1,430.3 ± 76.3 1,306.7 ± 85.1* 

All values are expressed as mean ± SD. *p<0.05 vs CNT. CNT: Non-treated control group, 

SLOW: Slow angular velocity.  
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Isometric tetanic ankle torque 

Isometric tetanic torque values (Table 3-2) and relative changes (Figure 3-2) are shown. Using 

raw values, significant torque deficits were observed on 2D and 4D in both groups, but further 

torque deficit at 6D was observed in only the FAST group. Using relative values, a significant 

decrease at 2D was observed both in the SLOW and FAST groups, but further significant decline 

was observed only in the FAST group.  

 

Changes in sciatic NCV 

Sciatic NCV was significantly lower in the FAST group after repeated bouts of ECs. However, 

no significant deficits were observed in the SLOW group (Figure 3-3).  

 

Fiber diameter and myelin sheath thickness 

Assessments of morphological changes were done in the FAST and SLOW 4-bout groups and 

the CNT group. Myelin sheath thickness of the sciatic nerve decreased only in the FAST group. 

Sciatic nerve fiber diameter significantly decreased only in the FAST group in comparison with the 

CNT group. No significant decreases were observed in the SLOW group (Figure 3-4A, 4B).  
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Table 3-2. Changes in isometric tetanic torque during the experimental period in the 4-bout 

groups (Isometric tetanic torque [mN･m]) 

 

 

 

Pre 2D 4D 6D 

Isometric 

tetraninc torque 

(mN･m) 

SLOW 144.8±12.6 124.7±8.4
†
 134.9±13.0

†
 144±5.1 

FAST 150.5±8.4 127.7±15.4
*
 121.4±10.2

*
 99.5±10.0

*
 

All values are expressed as mean ± SD. †p<0.05 vs pre in the SLOW group, * p<0.05 vs pre in 

the FAST group. Pre: Before exercise, 2D: 2 days, 4D: 4 days, 6D: 6 days, SLOW: Slow angular 

velocity, FAST: Fast angular velocity.  
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Figure 3-2.   Isometric tetanic torque in the FAST and SLOW groups after 4 bouts of ECs 

Deficit was observed in both groups on day 2 post-ECs. Torque continued to decline in the 

FAST group until 6D. (2D: 84%, 4D: 80%, 6D: 66% ; † p<0.05 vs pre in the SLOW group, * p<0.05 

vs pre in the FAST group). SLOW: Slow angular velocity, FAST: Fast angular velocity, Pre: Before 

exercise, Post: After exercise, 1D: 1 day, 2D: 2 days, 4D: 4 days, 6D: 6 days.  
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Figure 3-3.   Changes in sciatic NCV 

Sciatic NCV was significantly lower in the FAST group after repeated bouts of ECs (2 bouts: 

78%, 3 bouts: 78%, 4 bouts: 42%; *p<0.05 vs CNT). No significant deficits were observed in the 
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SLOW group. NCV: Nerve conduction velocity, CNT: Control, SLOW: Slow angular 

velocity, FAST: Fast angular velocity.  
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Figure 3-4.   Morphological observation of sciatic nerve after 4 bouts of ECs 

4A. Images show a transverse section (scale: 5 μm) obtained from each group. M: Myelin 

sheath, A: Axon, A: Myelin sheath thickness, B: Fiber diameter. 
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4B. Myelin thickness and fiber diameter decreased in the FAST group (*p<0.05). Myelin 

(CNT: 1.41 ± 0.20 μm, n=418, SLOW: 1.39 ± 0.10 μm, n=379, FAST: 1.12 ± 0.13 μm, n=479, left), 

Diameter (CNT: 2.69 ± 0.20 μm, n=418, SLOW: 2.93 ± 0.24 μm, n=379, FAST: 2.39 ± 0.20 μm, 

n=479, right). CNT: Control, SLOW: Slow angular velocity, FAST: Fast angular velocity.  
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3-5. Discussions 

I investigated whether repeated bouts of ECs cause damage to the sciatic nerve in a rat model. 

I previously reported that ECs with fast angular velocity induce transient nerve impairment, and a 

significant NCV reduction caused by repeated ECs bouts was observed in the FAST ECs bouts 

groups (16). Additionally, a more than 50% reduction in torque deficit and NCV was observed in the 

FAST 4-bout ECs group. I further found that morphological nerve fiber changes (e.g., nerve 

diameter atrophy and myelin sheath thinning) were observed in the FAST 4-bout ECs group. On the 

other hand, signs of sciatic nerve injury were not observed in the SLOW group. 

Muscle force is frequently used as an indicator of muscle damage in both humans and animals 

(10, 16, 39). A significant deficit in torque was observed in both ECs groups after repeated ECs. 

Acute ECs temporarily induce a force reduction, independent of angular velocity, and the torque 

gradually recovers over time (16). In this study, I observed that repeated bouts of ECs induced a 

continuous torque decline throughout the experimental period in the FAST group. These results 

suggest that consecutive bouts of ECs with a high angular velocity cause severe functional 

impairment in muscle. In the SLOW group, significant torque deficit was observed on 2D and 4D 

(Table 3-2). Using relative values, a significant decline was observed only at 2D (Figure 3-2). It is 
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well known regarding muscular adaptation in the repeated bout effect (RBE) that muscle functions 

(e.g. muscle strength and soreness) are less impaired after a second bout of ECs than after the initial 

ECs (12, 64). Diminishment of a significant torque deficit at 6D in SLOW group suggests that RBE 

occurs after slow angular velocity ECs. Nerve damage was induced by repeat bouts of ECs with high 

angular velocity. A significant NCV reduction was observed only in the FAST group (2 bouts: 78%, 

3 bouts: 78%, 4 bouts: 42%). NCV is a primary indicator of chronic and traumatic nerve damage (28, 

65-67). Peripheral nerve tissue is easily damaged by direct/indirect stresses through continuous 

compressions and entrapment, such as that seen in patients with sports injuries and disease (29, 42). 

When the damage occurs via stretching and/or compression of the peripheral nerve (e.g., myelin 

sheath or axon), the NCV is decreased due to impaired action potential traffic (53, 68, 69). Lee et al. 

(16) reported decreased NCV (21%) after a single bout of fast ECs. ECs-induced nerve damage was 

also observed in the present study (16). Additionally, the nerve was damaged more severely than the 

previous study (16). In particular, a 42% decrease in NCV was observed after 4 bouts of fast ECs, 

suggesting a cumulative effect occurs, as hypothesized. I speculated that the cause of the largest 

decrease in the 4-bout group is the timing of the fourth ECs bout. The previous study showed that 

NCV impairment appears 7D after a single bout of fast ECs. The day on which the fourth ECs bout 
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was performed (7D) coincided with the time point at which a significant decrease in NCV was 

observed after a single ECs (16). Therefore, I speculate that the accumulation of repeated temporary 

damage causes serious deterioration. Repeat bouts of slow ECs did not induce any impairment, and 

this result is in agreement with those of a previously reported single-bout experiment (16). In 

morphological analysis, damaged nerve fibers and myelin sheaths thinning were observed only in 

the 4-bout FAST ECs group. Neuronal degeneration is repeatedly induced by mechanical stress 

(compression, elongation, and denervation) or neuropathy (70, 71). Thinning of the myelin sheath 

and atrophy of fibers are typically observed after nerve transection (71). Additionally, I 

quantitatively analyzed nerve fiber morphology after ECs bouts. Only in the FAST group, myelin 

thickness (21%) and fiber diameter (12%) were significantly lower when compared with CNT values 

(p<0.05, Figure 2-4A, 4B). These results suggest that FAST ECs bouts strongly induce nerve 

thinning. Ikeda et al. reported a strong correlation between NCV and fiber diameter. The 

morphological changes measured in nerves correlated with the NCV reduction observed after ECs 

with a higher angular velocity. These results indicate that repeated bouts of ECs with faster angular 

velocity induce both functional and structural nerve disorders. 

Although the mechanisms of ECs induced nerve damage are unclear, it is reported that nerve 
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damage is induced by several stresses such as transection, ischemia, immunologic changes, avulsion 

or metabolic disturbances (29, 72, 73). Although I have no data regarding the injury mechanism, I 

would like to suggest squeeze stress is applied to nerve fibers during ECs. A previous study reported 

that muscle-tendon behavior shifts after an initial bout of ECs; in that study, muscle fascicle length 

was shortened by 16%, suggesting that high indirect force was applied to connective tissues by ECs 

(74). Because nerve fibers are embedded in connective tissues, squeeze injuries may be applied 

during ECs with fast angular velocity. Additionally, the damage occurs in the neuromuscular 

junction. I and others have reported that the discontinuous area at muscle tendon units, such as the 

myotendinous junction and myofascial junction, is frequently damaged by ECs (10, 74). In the 

mouse model of muscular dystrophy (mdx mice), 15 maximal quadriceps ECs disrupted the motor 

end plate (75). Although this effect of ECs has only been reported in mdx mice, it is possible that 

neuromuscular junctions are disrupted after ECs with high angular velocity. 

In this study, the MG wet weight of FAST group was significantly decreased in comparison to 

the CNT group (Table 3-1). Recent study showed that the MG wet weight after repeated bouts of 

180°/sec ECs was significantly lower (6%) than that in the non-treated control group (33). The ECs 

protocol was same as the current study. In that paper, Ochi et al. also showed an increase in protein 
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breakdown by induction of forkhead box transcription factor O (FoxO) and myostatin contents in the 

MG after ECs. Although tissue swelling due to inflammatory responses also occurred, enhanced 

protein breakdown may lead to tissue atrophy. Since muscle atrophy is generally caused by 

denervation or immobilization muscle atrophy after ECs might be induced by nerve damage (76).  

In humans, muscle strain injuries are induced by ECs (77). Strength loss and muscle atrophy 

are major symptoms in strain injury (78). In the current study, I found that repeated bouts of severe 

ECs induced myelin and axonal damage, concomitant with strength loss and muscle atrophy in an 

animal model. This line of evidence suggests that ECs inducing muscle strain might also damage 

nerve tissues. Since nerve damage induces muscle strength loss and atrophy, I speculate that motor 

nerve impairment might also occur in strain injuries. I’m now investigating sciatic nerve conduction 

velocity in athletes with hamstring strain injuries (HSI).  
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3-6. Conclusions 

I conclude that nerve impairment induced by ECs is a velocity-dependent phenomenon. I 

observed nerve dysfunction and morphological abnormalities in the repeated FAST ECs group. 

However, no differences were observed in the SLOW group. Therefore, I conclude that repeated 

bouts of ECs with high angular velocity induce damage to the nerve in a cumulative fashion.  
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Chapter 4. Sciatic nerve conductivity is impaired by hamstring strain injuries  

 

4-1. Abstract 

Introduction: The aim of this study was to assess sciatic nerve conductivity in athletes with a history 

of HSI.  

Methods: Twenty-seven athletes with a history of HSI were included in the injured group. The 

control group consisted of 16 uninjured participants. I measured the proximal and distal latencies 

and calculated the sciatic NCV to evaluate neuronal conductivity. The results were expressed as 

median values and interquartile ranges.  

Results: Both PL and DL of the injured limb in the injured group were significantly longer than 

those of the uninjured limb (p<0.05). The NCV of the injured limb in the injured group was 

significantly lower than that of the uninjured limb (p<0.05). There were no significant side-to-side 

differences in the CNT group.  

Conclusion: Sciatic nerve conductivity impairments may exist in athletes with a history of HSI.  
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4-2. Introduction 

Hamstring strain injuries are frequently observed in athletes who participate in strenuous 

sports such as rugby, American football, soccer, and track and field events (78, 79). Decreased 

strength and loss of flexibility are the typical symptoms (78, 80). In addition, HSI are characterised 

by high re-injury rates (81). It is generally known that the risk factors for HSI are mainly categorized 

according to non-modifiable factors (age, previous HSI, and/or ethnic origin) and modifiable factors 

(fatigue, strength imbalances, and/or early return to sports) (81-83). Colak et al. reported that the 

peripheral nerves of the upper extremities of ice hockey players are exposed to acute and chronic 

mechanical motions, such as the racket swing (28). In their study, conductive time of the brachial 

plexus was 6% prolonged in athletes compared with non-athlete controls. In addition, I found that 

nerve conductivities were impaired in animal and human models with ECs induced muscle damage 

(16, 17, 84). Degenerated nerves, thinner myelin, and decreased axon diameters were also observed 

after ECs (84). Further, Kami et al. reported that crush injury in the MG induced sciatic nerve injury 

(30). These reports indicate that muscle injuries induced by overuse and/or strenuous exercises are 

possibly accompanied by functional and structural nerve responses. 

A previous commentary suggested that entrapment of the lumber spinal nerves may predispose 



 68 

towards high recurrence rate of HSI (85). The lumbar nerves supply the several peripheral nerves 

that contract the lower limb muscles. Specifically, the hamstring and calf muscles are innervated by 

the sciatic nerve which branches at the L5 and S1 regions (85). Although these reports strongly 

suggest the existence of nerve impairments in muscle injuries, direct evidence of this conclusion is 

lacking. 

The aim of this study was to investigate the nerve impairment of the sciatic nerve in athletes 

with a history of HSI. Here, I hypothesized that sciatic nerve conductivities are impaired by a history 

of muscle strain injuries.  
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4-3. Methods 

Participants 

Before participating, the subjects received a detailed description of the study assessment 

method and provided informed consent. This study was performed in the ethical committee of 

Nippon Sport Science University (013-H08). Forty-three collegiate students were enrolled; of them, 

27 were athletes with a history of HSI defined as non-traumatic injuries of the hamstring (excluding 

muscle contusions) who were assigned to the injured (INJ) group; 16 uninjured participants were 

assigned to the CNT group. Especially, subjects of the INJ group were recruited that the medical 

staff advertised from their sports clubs respectively. The INJ group was asked about their history of 

HSI and time to returning to sports. The duration of return to sport was 2 weeks to 2 months. 

Subjects with acute and chronic strain injuries were recruited. In this study, an acute strain injury 

was defined as the state in which the athletes had not returned to full participation in training and 

were not available for selection. On the other hand, the definition of a chronic strain injury was the 

state in which the athletes had returned to full participation on training and game (79, 86). 

Twenty-three athletes had already returned to their sports while three subjects were not return to play. 

The INJ group had a hamstring injury only once. The subjects in the CNT group had not exercised 
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regularly in the past year but occasionally participated in recreational sports. In this study, an 

inclusion criteria of the CNT group was defined that subjects had not had a HSI in the past. All 

participants were asked to refrain from performing strenuous activities to eliminate the effects of 

acute activities. None of the subjects in either group had undergone surgery for HSI or other 

diseases. 

 

Sciatic NCV examination 

The hamstring is composed of the biceps short head, which is innervated by the common 

fibular nerve, and the biceps long head, semitendinosus, and semimembranosus muscles, which are 

innervated by the tibial nerve. Both nerves are branches of the sciatic nerve, which originates at the 

lumbosacral plexus. Therefore, I targeted the sciatic nerve for the nerve conduction assessment. 

The nerve function was examined to determine nerve conduction impairments due to 

neuropathy and traumatic injury (32). The NCV was indicated as the conductive speed of the action 

potential per second in this study. It was calculated using the distance and time differences of two 

M-wave latencies, PL and DL. The PL is the conductive time from the initiation site of the sciatic 

nerve to the hamstring, while the DL is detected from the inferior division of the piriformis muscle 
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to the hamstrings. The action potential was induced by stimulating two points (lower lumbar and 

gluteal) as described previously (32). The proximal stimulation focused on the L5 root at the 

midpoint between the L5 spinal process and the posterior iliac crest; the distal stimulation was 

placed over the sciatic nerve at the gluteal fold, which is located at the midpoint between the ischial 

tuberosity and the greater trochanter of the femur (32) (Figure 4-1). Both latencies were detected as 

the compound muscle action potential detected from the hamstring contractions. The stimulation 

device used a magnetic stimulator (Magstim Company Ltd., Whitland, UK). A 70-mm-diameter 

figure eight-shaped coil was used for the stimulation. Intensities were set from 1.6 to 2.0 Tesla to the 

supramaximal stimulus. Subjects were standardised during the NCV testing. A recording electrode 

was placed at 50% of the hamstring length, consisting of the biceps femoris, semimembranosus, and 

semitendinosus muscles. A reference electrode was affixed to the tendon of the semitendinosus 

muscle. The room temperature was maintained at 26–28°C to exclude temperature changes in 

conductivity. The NCV value reliability was estimated as the CV of 2.1%-3.5% obtained from 4 

healthy male volunteers.  
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Figure 4-1. Measurement of NCV 

NCV is calculated using the distance and time differences of two latencies as follows: NCV = 

distance/(PL – DL). PL indicates refers to the time of nerve root stimulation to the recording of the 

hamstring contraction. DL is achieved by a nerve stimulation passed through the bottom of the 

Figure 4-1
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piriformis to record the hamstring contraction. PL: Proximal latency, DL: Distal latency, NCV: 

Nerve conduction velocity.  
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Magnetic resonance Imaging (MRI) 

In this study, INJ group consisted of chronic and acute cases. Therefore, magnetic resonance 

imaging (MRI; 0.3-Tesla; AIRIS II; Hitachi, Ltd., Tokyo, Japan) was used to observe the structural 

change of the injured site. The signal region was confirmed based on the short inversion time 

inversion recovery in the coronal and axial planes (86). The obtained images were divided into 

signal findings or no signal in accordance with the observation of an experienced orthopaedist. 

 

Statistical analyses 

Using the Shapiro-Wilk test, the data did not have a normal distribution, except for the 

physical characteristics. Therefore, nerve functions were expressed as median values and 

interquartile ranges. The statistical analysis used non-parametric tests. The Wilcoxon’s signed-rank 

test was used to compare the intra-subject differences (CNT, right vs. left; INJ, uninjured vs. injured) 

in the NCV, PL, and DL. To compare the M-wave latencies and NCV between both groups, relative 

side-to-side differences were calculated. In the CNT group, NCV was obtained by dividing the lower 

value by the higher value in each participant. Relative side-to-side differences in the PL and DL 

were calculated by dividing the higher value by the lower value in each participant. To obtain the 
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relative values of the INJ group, the value of the injured limb was divided by that of the uninjured 

limb in each participant.  

The Mann-Whitney U test was used to compare the inter-subject differences. The NCV and 

other variables were analysed using the non-parametric Spearman’s product-moment correlation by 

using the SPSS ver. 22.0 for Mac (IBM Japan, Tokyo, Japan), and the significance level was set at 

p<0.05. Effect sizes (ES) and statistical power were calculated according to Cohen’s d effect sizes. 

Physical characteristics are expressed as means and SD.  
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4-4. Results 

Physical characteristics 

The physical characteristics showed no significant differences between the CNT (age, 19.6 ± 

1.4 years; height, 167.7 ± 7.0 cm; weight, 61.9 ± 7.3 kg) and INJ (age, 19.9 ± 1.1 years; height, 

170.4 ± 9.2 cm; weight, 72.7 ± 16.0 kg) groups.  

 

Changes in sciatic NCV 

In the CNT group, no significant side-to-side differs were observed for the PL and DL (Table 

4-1A). In the INJ group, significant side-to-side differences were found for PL and DL. (Table 4-1B). 

Further, relative side-to-side differences the PL in the INJ group was higher than that in the CNT 

group (CNT, 3%; INJ, 13%; ES = 0.78; 95 % CI = 0.13–1.41; p<0.05; Table 4-1C). However, there 

was no significant difference in the DL between the CNT and INJ groups. 

In the CNT group, the NCV of both legs showed almost similar median values, such as 72.7 

m/s (right) and 72.4 m/s (left). Conversely, the NCV of the injured limb [64.5 m/s (51.7 m/s–74.3 

m/s)] was significantly lower than that of the uninjured limb [76.4 (71.6-84.2)] (ES = 0.87, 95% CI 

= 0.3–1.42; p < 0.05; post hoc power: 99%, Table 4-2, Figure 4-2). When comparing the INJ group 
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with the CNT group, the relative side-to-side NCV differences in the INJ group were significantly 

higher than that in the CNT group (CNT group, 98%; INJ group, 84%; ES = 2.04; 95% CI = 1.26–

2.75; p<0.05; post hoc power: 98%; Table 4-2).  
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Table 4-1A. Proximal and distal latencies of the subjects in the CNT group 

  

PL DL 

CNT group 

(n = 16) 

Right limb (m/s) 4.43 (4.05–4.92) 2.45 (1.44–3.10) 

Left limb (m/s) 4.48 (4.04–4.79) 2.25 (1.44–2.86) 

All data are expressed as medians (interquartile ranges). CNT: Control, PL: Proximal latency, 

DL: Distal latency. 

 

Table 4-1B. Proximal and distal latencies of the subjects in the INJ group 

    PL DL 

INJ group 

 (n = 27) 

Uninjured limb (m/s) 5.55 (4.15–7.13) 3.60 (1.78–4.28) 

Injured limb (m/s) 5.85 (4.45–7.87)
*
 3.60 (2.10–4.48)

*
 

All data are expressed as medians (interquartile ranges). INJ: Injured, PL: Proximal latency, 

DL: Distal latency, 
*
p<0.05 vs. the uninjured limb. 

 

Table 4-1C. Percent increase in the proximal and distal latencies of the subjects in the CNT 

and INJ groups 
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  PL DL 

CNT group (%) 3 (1–6) 5 (1–13) 

INJ group (%) 13 (8.5–19.2)
†
 7 (1–14) 

All data are expressed as medians (interquartile ranges). CNT, Control; INJ, Injured; PL, 

Proximal latency; DL, Distal latency; 
†
p<0.05 vs. the CNT group.  
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Table 4-2. Sciatic NCV among subjects in the CNT and INJ groups 

 

 

 

 

 

 

All data are expressed as medians (interquartile ranges). CNT: Control, INJ: injured, NCV: 

Nerve conduction velocity, 
†
p<0.05 vs. the CNT group, 

*
p<0.05 vs. the uninjured limb.  

CNT group (n = 16) 

Right limb (m/s) 72.7 (64.8-79.1) 

Left limb (m/s) 74.0 (64.6-78.8) 

Left/right (%) 98 

INJ group (n = 27) 

Uninjured limb (m/s) 76.4 (71.6-84.2) 

Injured limb (m/s) 64.5 (51.7-74.3)
*
 

Injured/uninjured (%) 84
†
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Figure 4-2. NCV values between the uninjured and injured limbs in the INJ group 

 

 

 

 

 

 

 

 

 

 

 

 

 

The NCV values significantly decrease in the injured limb (*p<0.05). Slower NCV values in 

the injured limb are observed in all examined injured subjects. NCV: Nerve conduction velocity.  

*
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Magnetic resonance Imaging (MRI) 

High signal intensity on MRI was observed in 10 of the 27 subjects (37%) in the INJ group. 

There was no significant correlation in the NCV values between the two groups with or without high 

signal intensity (rho, -0.124; p = 0.539). 

 

Time after injury 

The time after injury was 1–70 months. There was no significant association between the nerve 

functions (rho, -0.267; p = 0.178). Therefore, such respective variables were not correlated, except 

for the PL and DL. The physical characteristics, MRI observations, sport backgrounds, and nerve 

functions of the patients in the INJ group are shown in Table 4-3.  
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Table 4-3. Physical characteristics, MRI findings, and nerve conductivity in the INJ group 
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MRI: Magnetic resonance imaging, INJ: Injured; PL: Proximal latency, DL: Distal latency, 

NCV: Nerve conduction velocity.  
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4-5. Discussions 

This study explored whether the sciatic nerve conductivity is impaired in athletes with the 

history of hamstring stain injuries. To assess nerve functions, I measured sciatic NCV and latencies 

in CNT and INJ groups that results were compared with between both groups. For injured group, 

prolonged M-wave latencies and decreased NCV of the sciatic nerve were observed in the injured 

limb compared to uninjured side. There was no significant difference in the side-to-side comparison 

in the CNT group. In addition, there were significant inter-group differences in the relative 

side-to-side differences between the CNT and INJ groups, regardless of similar physical 

characteristics. Side-to-side NCV differences were observed in all of the athletes who experienced 

hamstring strain injuries in the INJ group.  

PL, DL, and NCV measurements are used to assess nerve function in a variety of temporal 

nerve functional impairments and injuries (28, 32, 41). In this study, the PL was significantly longer 

in the INJ group (Figure 4-2). I previously found longer latency in the musculocutaneous nerve after 

ECs of the biceps brachii in humans (17). I also confirmed that ECs reduced maximal voluntary 

elbow flexor torque and muscle pain. These results indicated that muscle damage might be 

associated with increased PL and decreased NCV. When taken together, these findings show that 
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sciatic nerve function was affected by hamstring strain injuries. Although there were no significant 

relative side-to-side differences in the DL between the INJ and CNT groups, the data distributions 

showed that the DL in the INJ group was longer than that in the CNT group. I would like to discuss 

the reason why only the PL, but not the DL, showed a significant difference in the latter half of the 

discussion section. 

Since M-wave latency includes axonal conductivity, neuromuscular transmission, and 

electrical conductivity in the muscle, I calculated NCV to focus on axonal conductivity. I found that 

NCV of the injured limb was significantly decreased compared to that of the uninjured side (ES = 

0.87; Table 4-2). I further confirmed that side-to-side differences of the sciatic NCV in HSI athletes 

were significantly greater than the side-to-side differences in the CNT group (ES = 2.04; Table 4-2). 

I previously observed a significant 21 % decrease of sciatic NCV that is indicated between from 

origin of sciatic nerve to branching point to MG after ECs in rats (84). Although I cannot rule out 

whether functional impairments also exist in the NMJ and electrical conductivities of the muscle, I 

believe that nerve conductive impairments are associated with HSI. 

My recent studies found the innervation nerve impairment after unaccustomed ECs. NCV 

deficit (a single EC bout: 21%; multiple EC bouts: 42%) and prolonged M-wave latency (a single 
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ECs bout: 24%) were induced in both animal and human studies (16, 17, 84). In this study, I found 

an 11% prolonged PL and 10–30 % reduction of sciatic NCV in athletes with history of HSI, 

suggesting that the reduction rate in strain injury was comparable with those in ECs-induced nerve 

impairment. Unaccustomed ECs during high-velocity sprinting and sudden accelerations are major 

risk factors for HIS (87). Therefore, the present results might support previous observations, 

showing that nerve damage was possibly induced by ECs. 

However, it is unclear whether nerve conductivity impairment was caused by actual nerve 

tissue damages. In the previous study, macrophage invasion and loss of myelin protein were also 

caused by a single bout of ECs (16). In addition, myelin sheath and axonal thinning were observed 

on electron microscopy after repetitive ECs (84). In the present study, impaired nerve conductivity 

was sustained for months or years, although the subjects already returned to their play except for 

subjects had not returned to play. Therefore, I think that the persisting nerve conductivity impairment 

is due to the actual nerve tissue damage, such as myelin sheath and/or axonal thinning.  

In this study, I measured the sciatic NCV between the origin of the sciatic nerve at the 

lumbosacral plexus and the piriformis area in which the NCV was calculated from the PL and DL. 

The NCV and PL were significantly impaired in the INJ group; however, the relative side-to-side 
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difference in the DL was not significant. Chang et al. reported that retrograde axonal atrophy was 

confirmed by measuring the NCV in patients with carpal tunnel syndrome (CTS) (88). They 

observed significant reductions in the wrist-palm motor conduction velocity (36.2%) as the typical 

symptom of CTS. In addition, the median forearm motor conduction velocity also significantly 

decreased compared with the normal control group (4.43%). In the previous study, the forearm 

motor conduction velocity, rather than the wrist-palm motor conduction velocity, was measured at a 

distal site. Therefore, if the initial nerve conductivity impairment occurs near the exercised muscle, 

the effect of the hamstring muscle injury is propagated to the remote region of the sciatic nerve. 

Kami et al. (30) reported that a contusion injury to the gastrocnemius muscle induces a sciatic nerve 

injury and that the damage occurs in a retrograde fashion toward the lumbar spinal nerve. Similarly, 

the dying-back phenomenon is also known as a retrograde nerve degeneration process that is 

observed in neuronal disorders, such as Charcot-Marie-Tooth and amyotrophic lateral sclerosis (89, 

90). Hence, I think that sciatic nerve conductivity impairment initially occurs near the injured site of 

the hamstring and that the impairment might propagate toward the spinal cord. 

Nerve conductive function is assessed using electrical stimulation (28, 29). However, 

electrical stimulation is invasive because the sciatic nerve is located deep beneath the skin. On the 
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other hand, magnetic stimulation is a beneficial tool that enables a direct percutaneous stimulation of 

the sciatic nerve (32). Therefore, I used a pulsed magnetic field to induce electrical activity in the 

sciatic nerve. Chang et al. measured sciatic NCV by magnetic field stimulation and reported that the 

normal sciatic NCV was 68.7 ± 10.1 m/s (32). In this study, the NCV value of the CNT group was 

72.3 ± 12.3 (right) and 71.5 ± 12.3 (left), values that were similar to the value reported by Chang et 

al. They also found that the sciatic NCV was decreased by 19% in patients with piriformis syndrome. 

I also found a similar decrease of 14% in the injured limb. These lines of evidence suggest that 

magnetic field stimulation is an applicable substitute for electrical stimulation for measuring sciatic 

NCV. 

This study has several limitations. First, it is unclear whether the significant differences in the 

NCV and PL are reliable because the sample size was small in the present study. However, I 

analysed the effect size of the NCV and latency as follows: PL: CNT group vs INJ group; ES = 0.78; 

95 % CI = 0.13–1.41; NCV: CNT group vs INJ group ES = 2.04; 95% CI = 1.26–2.75. Although the 

sample size was small, the relatively large effect sizes indicate that the results obtained in this study 

are reliable. Second, I did not examine the injured site and damage degree of the HSI. There may be 

differences in the M-wave latencies and NCV characteristics if the damaged areas are different. 
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However, I found that all athletes who had HSI showed side-to-side differences in the sciatic NCV. 

Thus, I think that sciatic NCV would be affected by HSI regardless of injured sites and severity. 

Third, all participants in the INJ group were athletes, while those in the CNT group sometimes 

participated in recreational sports. Hence, the observed differences in the nerve function may be 

because of the different activity levels of the participants. Since I observed that the nerve function 

was almost similar among the uninjured limbs of all participants, I think that the participants in the 

CNT group serve as a suitable reference for the INJ group. Finally, a longitudinal examination is 

necessary to clarify the contribution of nerve impairments to HSI.  
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4-6. Conclusions 

In conclusion, sciatic nerve conductivity is impaired in athletes with a history of HSI. I suggest 

that sciatic nerve disorders might be induced by strain injuries owing to the eccentric movements of 

the hamstrings. This is the first study to show that sciatic nerve conductivity impairment is observed 

in athletes with a history of HSI.  
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Chapter 5. General discussions 

5-1. Summary 

The purpose of this thesis is to investigate as follows: 

1. To measure musculocutaneous nerve conductivity after single bout of ECs in biceps brachii 

muscle (Chapter 2). 

2. To evaluate whether repeated bouts of FAST ECs cause severe damage to the sciatic nerve in MG 

of rats (Chapter 3). 

3. To investigate nerve latency and NCV of the sciatic nerve in athletes with a history of HSI 

(Chapter 4). 

In the chapter 2, the experiment was applied that whether ECs induced innervation nerve 

impairment is observed in human. Subjects were received single bout of 60 ECs with the muscle 

damage on biceps brachii muscle. Their MsN latency and amplitude were measured. After ECs, 

there is the observation that values of latency significantly increased (12 - 24 %) on 1 - 2 days. 

Therefore, it is established that unaccustomed ECs lead to MsN nerve impairment by this 

experiment. 

In the chapter 3, functional and morphological sciatic nerve variations were assessed in rat’s 
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MG after multiple bouts of ECs. Rats were applied different angular velocity ECs which is SLOW 

and FAST. Sciatic NCV was gradually decreased with increasing bouts of ECs (2 bouts: 78%, 3 

bouts: 78%, 4 bouts: 42%) only the FAST group. Especially in the 4 bouts ECs of FAST group, 

degenerated sciatic nerves were observed that these fiber diameters were narrowed. On the other 

hand, functional and morphological disorders were not shown both CNT and SLOW groups. These 

results indicated the knowledge that severe ECs such as multiple bouts cause seriously innervation 

nerve impairment. 

In the chapter 4, clinical application was applied whether sciatic nerve conductivity exists in 

athletes with a history of HSI. Previous chapters clarified that ECs lead to not only skeletal muscle 

injury, but also innervation nerve impairment. ECs contribute to characteristic movements such as 

cutting and leg swing during running. ECs is one of the factor of muscle strain injury that is induced 

by rapid ECs. Therefore, It is a possibility that innervation nerve impairment is observed in the case 

of muscle strain injury. To examine this possibility, 43 subjects were assessed their sciatic nerve that 

innervates hamstrings. Significant NCV deficit (14 %) and prolonged PL (10%) were observed in 27 

subjects who have the history of HSI. On the other hand, there were not observed these phenomena 

in not injured 16 subjects. In addition, side-to-side difference of NCV values was observed in 27 
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injured athletes. Hence, it is clarified that innervation nerve impairment is observed in athletes with a 

history of HSI.  
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5-2. Future perspective 

The possible mechanism of ECs induced peripheral nerve damage 

It has been studied for long years about ECs induced muscle damage. In this study, innervation 

nerve impairment has been found after strenuous ECs. In human and animal studies, time course of 

innervation nerve impairment was later than decrease of MVC and ROM while similar time course 

of DOMS. And then, more severe NCV deficit and pathological abnormality were induced by 

chronic ECs. In the chapter 4, the result supported a hypothesis that nerve dysfunction is observed in 

athletes with history of HSI. These results indicated that impairment of nerve function might be 

related to clinical symptoms such as continuous strength loss, neuromuscular un-coordination and 

re-injury of HSI. However, process of pathological condition and the inducible factor of ECs 

induced nerve impairment are remained unclear.  

I have already obtained few data about the mechanism of ECs induced nerve impairment, by 

use of animal experimental model. After FAST ECs, sciatic nerve and intramuscular nerve of MG 

were divided into 5mm segments to examine by histochemical analysis. Sciatic nerve tissue was 

analyzed by evans blue dying (EBD) that can detection the vascular permeability due to nerve 

damage (91, 92). Intramuscular nerve was stained by EBD and lectin. In the intramuscular nerve, 
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EBD infiltrations were observed on lectin-stained site only 1D and 3D (Figure 5-1, 2). In the sciatic 

nerve tissue, EBD was detected in distal portion of sciatic nerve on immediately post after FAST 

ECs. Interestingly, EBD stained sciatic nerve tissue was observed in proximal segments close to the 

spinal cord on 1D, 3D and 7 D after FAST ECs (Figure 5-3).  
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Figure 5-1. EBD and Lectin staining for intramuscular nerve on 1D after strenuous ECs 
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EBD infiltrations were observed on lectin-stained site. Top: EBD strained, Middle: Lectin 

stained, Bottom: Marged, White arrows: Positive stained nerve tissue.  
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Figure 5-1. EBD and Lectin staining for intramuscular nerve on 3D after strenuous ECs 
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EBD infiltrations were observed on lectin-stained site. Top: EBD strained, Middle: Lectin 

stained, Bottom: Marged, *: Positive stained muscle fiber, White arrows: Positive stained nerve 

tissue.  
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Figure 5-3. EBD for sciatic nerve tissue after strenuous ECs 

EBD infiltrations were observed from immediately post to 7D after strenuous ECs. Top: White 

arrows; Positive stained nerve tissue, CNT: Non-treated control group, Post: immediately after, 1D: 
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1 day, 3D: 3 days, 7D: 7 days, 10D: 10 days.  
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Hence, ECs induced nerve impairment possibly occurred near connection of neuron and muscle, and 

retrogradely enlarged and/or transitioned from the damaged site. 

In addition, time course of nerve conductivity impairment is similar to expression of DOMS. 

Especially, sensory nerve dysfunction might be an important factor to resolve the generating 

mechanism of DOMS. In fact, there are indications that neurotrophic factors such as nerve growth 

factor and/or brain derived neurotrophic factor were increased in similar time point after strenuous 

ECs (93-95). 

Therefore, more studies are necessary to understand the mechanisms such as process of 

pathological condition and the inducible factor in ECs induced innervation nerve impairment.  
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CTS: Carpal tunnel syndrome 
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CV: Coefficient variation 

DL: Distal latency 

DOMS: Delayed onset of muscle soreness 

EBD: Evans blue dye 

ED1: Macrophage-related protein: 

E-C coupling: Excitation-Contraction coupling 

ECs: Eccentric contractions  

EIMD: Exercise induced muscle damage 

ES: Effect size 

FAST: Fast joint angular velocity 

FoxO: Forkhead box proteins O 

HSI: Hamstrings strain injuries 

INJ: Injured group 

ISOs: Isometric contractions 

NCV: Nerve conduction velocity 

NMJ: Neuromuscular junction 
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p0: Protein 0 

PL: Proximal latency 

PNS: Peripheral nervous system 

RBE: Repeated bout effect 

ROM: Range of motion 

SD: Standard deviation 

SLOW: Slow joint angular velocity  
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論 文 の 和 文 要 旨 

 

 

氏  名             鴻崎香里奈              

 

 

（博士論文の題目） 

Strenuous eccentric contractions induce the peripheral nervous injury 

過度な伸張性収縮は末梢神経損傷を誘発する 

 

（博士論文の要旨） 

第 1 章 過度な伸張性収縮は骨格筋の支配神経損傷を誘発する 

 骨格筋の収縮運動は等尺性、短縮性、伸張性収縮（ECs）の 3 様式に大別され

る.特に ECs は収縮条件によっては筋損傷が誘発され,近年ではラットに過度な

ECs を課すと,筋の支配神経に異常が誘発されることが明らかとなった.しかし,

ヒトで同様の現象が観察されるか否か,あるいは ECs の条件変化が神経へ及ぼす

影響は未解明である.本研究では,3 つの課題を検証した. 

 

第2章 過度な伸張性収縮は上腕二頭筋支配神経である筋皮神経潜時を遅延させ

る 

 

 本章では ECs 誘発性の神経損傷がヒトにおいて観察されるか否かを検証した.

対象者は運動習慣のない 15 名の成人女性（年齢: 24.6 ± 3.5 歳,身長: 160 ±5.3 cm,

体重: 55.3 ± 5.5 kg）とし,非利き手側の上腕二頭筋に ECs を実施した.ECs は先行

研究に則り,90°/秒の関節角速度にて 1 セットあたり 6 回の ECs を 10 セット課し

た.5 日間の実験期間中,ECs は初日のみ,直後から翌日以降の 4 日間（1-4 日後）

で筋および神経機能を評価した.筋機能は最大等尺性発揮筋力（MVC）,肘関節可
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動域（ROM）,遅発性筋痛（DOMS）を,神経機能は上腕二頭筋を支配する筋皮神

経の潜時測定によって評価した.潜時は複合活動電位が神経を伝導し筋収縮を誘

発させるまでの時間を反映する.したがって神経機能が障害された場合,活動電

位の伝導が阻害され潜時が遅延する.筋機能の結果では MVC と ROM が ECs 実

施直後に顕著に低下し,DOMS は 2 日後で最も増悪した（p<0.05）.潜時は 1-2 日

後において ECs 実施前より 12-24%有意に遅延した（p<0.05）. 

 本実験結果より,ヒト対象の実験においても ECs 誘発性の神経機能低下が示さ

れた. 

 

第 3 章 ラット腓腹筋に対する繰り返しの伸張性収縮が坐骨神経へ及ぼす影響 

 

 過度な伸張性収縮を慢性的に負荷すると,重度な筋損傷が誘発される.本章で

はラット腓腹筋に高角速度の ECsを繰り返し,慢性的な ECsが支配神経へ及ぼす

影響を検証した.雄性 Wistar 系ラット（9 週齢）の内側腓腹筋に電気刺激を施し,

収縮を誘発させながら足関節を背屈させ,ECs を課した.群分けは関節角速度の速

い 180°/s 群（FAST）,遅い 30°/s 群（SLOW）,未処置群（CNT）とし, 1 日おきに

1-4 セット(1 日あたり 5 回×4 セット)を実施した.神経は腓腹筋支配神経を含む坐

骨神経伝導速度（NCV）を評価した.NCV は複合活動電位が神経から筋へ伝導す

る際の速度であり,NCV の低下は支配神経における機能障害の発生を反映す

る.FAST群では ECs実施回数の増加に伴い段階的なNCVの低下が誘発された（2

セット: 78%, 3 セット: 78%, 4 セット: 42%, p<0.05）.特に 4 セット群では,足関節

発揮トルクが CNT より 36%低下し,腓腹筋が萎縮した（p<0.05）.また電子顕微鏡

下で坐骨神経線維を観察すると,明らかに変性した神経線維が観察され,ミエリ

ン鞘は狭小化し線維径が減少した（p<0.05）. 

 本実験結果から,高角速度の伸張性収縮を繰り返し行うと,重篤な神経損傷が
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誘発されることが示された. 

 

第 4 章 ハムストリングスの肉離れは坐骨神経機能低下をもたらす 

 肉離れ損傷はスポーツ現場において頻発し,発揮筋力の低下や筋痛,重篤な例

では損傷部の線維化や筋萎縮が観察される.さらに高い割合での再受傷が指摘さ

れているが,原因は不明である. 肉離れはトップスピードでの疾走や切り返しなど，繰り

返しの ECsを主な損傷機転とするため,支配神経異常の関与が考えられる．本章では,

肉離れが好発するハムストリングス肉離れ既往者の坐骨神経 NCV を評価した. 27 名

の肉離れ既往者から成る INJ群（年齢: 19.6 ± 1.4 歳, 身長: 167.7 ± 7.0 cm, 体重: 

61.9 ± 7.3 kg）を対象に，腰部からハムストリングスまでの坐骨神経 NCV を測定し,16

名の非損傷者から成る CNT群（年齢: 19.9 ± 1.1 歳, 身長: 170.4 ± 9.2 cm, 体重: 

72.7 ± 16.0 kg）と比較した． INJ群では,CNT群より NCVが有意に 14%低下していた 

（p<0.05）.さらに INJ群の 27名全症例において,損傷側のNCVは非損傷側より有意な

低値を示した（p<0.05）.したがって, ECs を主な起点とした肉離れ損傷において

も神経機能の低下が確認された. 

 

第 5 章 今後の展望 

 本研究によって,過度な ECs を単回あるいは繰り返しおこなうと,支配神経の

機能・構造異常を誘発することがヒトおよび動物実験によって明らかとなっ

た.ECs が神経へ及ぼす影響の実態が解明されつつある一方で,発生機序や病態の

進行過程は不明である.既に幾つかの検証によって,ECs 実施後の筋内神経におけ

る血管透過性の亢進（神経損傷を示唆する現象）や,坐骨神経線維の血管透過性

の亢進が日数経過に伴い損傷部近傍から遠位（脊髄側）で発生することを確認

した.今後は病態メカニズムや発生機序の解明に向けた細胞・分子レベルでの調

査が重要課題である. 
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論 文 の 和 文 概 要 

 

 

氏  名                鴻崎香里奈                

 

 

（博士論文の題目） 

Strenuous eccentric contractions induce the peripheral nervous injury 

過度な伸張性収縮は末梢神経損傷を誘発する 

 

（博士論文の概要） 

 伸張性収縮(ECs)は筋が伸張しながら大きな力発揮を行う運動であり,健康増

進やトレーニングなどに用いられるが,実施条件によっては筋損傷を誘発する.

最近,支配神経機能の低下や構造破綻が誘発されることが動物実験によって報告

されたが詳細には検討されていない.本研究では以下の検証をおこなった. 

 第 2 章ではヒト上腕二頭筋に過度な ECs を実施し支配神経機能を評価した. 

運動習慣のない女性被験者 15名の上腕二頭筋に,伸張性収縮を初日のみ 60回実施

し,支配神経である筋皮神経の機能を測定した.その結果 ECs 側で神経損傷時に生じ

る潜時の遅延が観察された.したがって動物実験と同様,ヒトにおいても ECs 誘発性の

神経機能の低下が観察された. 

 第 3 章では,慢性的な繰り返しの ECs によって神経機能および構造異常が重症

化するか否かを検証した.ラット内側腓腹筋に対し高角速度の ECs を 1 日おきに

それぞれ 1〜4 セット(1 セットあたり 20 回)行い,支配神経である坐骨神経伝導速度

(NCV)を測定した. NCVは実施回数の増加に伴い著しく低下し,4セット実施群では変

性、狭小化した神経線維が観察された．したがって,ECsの繰り返しに伴い神経機能お

よび構造異常が重症化することが示された. 

 第 4 章では,ハムストリングス肉離れ損傷既往者を対象として坐骨神経の機能

低下が観察されるか否かを検証した. ハムストリングス肉離れは，疾走や切り返しな

ど，繰り返しの伸張性収縮を主な損傷機転とする．27 名の肉離れ既往者(INJ 群)およ
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び非損傷者 16名(CNT群)を対象に，坐骨神経伝導速度を測定した.その結果,INJ群

では CNT群と比較して NCVが 14%低下していた.さらに INJ群全症例において損傷

側 NCV は非損傷側より有意な低値を示した.したがって, 伸張性収縮を起点とした

筋損傷と捉えられている肉離れ損傷においても神経機能の低下が確認された． 
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論 文 の 欧 文 概 要 

 

 

(Name)         Karina Kouzaki           

   

 

(Title) Strenuous eccentric contractions induce the peripheral nervous injury 

 

 

(Abstract) 

Eccentric muscle contractions (ECs) has two aspects that effect positive or negative. Especially, 

unaccustomed ECs induces loss of muscle strength, limit of joint range of motion, muscle soreness 

and structural disruption. Hence, it is the important to obtain the effect of ECs with avoiding muscle 

injury. Recent study has indicated that strenuous ECs induces innervation nerve impairment in rats. 

In this study, three experiments were applied to investigate detail of ECs induced nerve impairment. 

In the chapter 2, the experiment was applied that whether ECs induced innervation nerve 

impairment is observed in human. After unaccustomed ECs, musculocutaneous nerve latency and 

amplitude were measured in 15 female subjects. There is the observation that values of latency 

significantly increased on 1 - 2 days after ECs. Therefore, it is established that unaccustomed ECs 

lead to musculocutaneous nerve impairment in human. 

In the chapter 3, rats were respectively applied ECs which is slow (SLOW) and fast (FAST) 
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angular velocities. Sciatic nerve conduction velocity (NCV) was gradually decreased with increasing 

bouts of only the FAST group. Especially most severe ECs of FAST group, degenerated nerves and 

narrowed fiber diameters were observed. Therefore, ECs such as multiple bouts causes seriously 

innervation nerve impairment. 

In the chapter 4, clinical application was applied whether sciatic nerve conductivity exists in 

athletes with a history of hamstrings strain injuries (HSI). ECs is one of the factor of muscle strain 

injury. Fourty-three subjects were measured their sciatic nerve that innervates hamstrings. 

Significant impairments of nerve conductivity were observed in 27 subjects with a history of HSI. 

However, there were not observed these phenomena in not injured 16 subjects. In addition, 

side-to-side difference of NCV values was observed in 27 injured athletes. Hence, it is clarified that 

innervation nerve impairment is observed in athletes with history of HSI. 

 

 

 

 

 

 

 

 

 

 


