運動の視点

石 井 喜 八*

（平成 2 年 10 月 31 日受付，平成 2 年 10 月 31 日受理）

My View-point of Physical Exercise

Kihachi Ishii

は じ め に

私はこれまで“動く身体”をめぐりて仕事をしてきた。動く身体がヒトの正常な生活状態であるからである。研究の道に手解された猪飼道夫は当時，体力をもつとこうしていた。彼は，理学者であり，医学部から教育学部の教授として移動した(1957)。彼の師は大戦前（1940年），学術研究会議の体力研究班の中枢的存在であった。これらの条件の結果が体力問題を扱うことになったと思われる。

我が国では「運動生理学」（吉田章信，南庄，1916）が発刊され，第8版（1927）まで重ねられている。海外では「Physiologica der Leibesübungen」（Schmidt, F. A., 1905）がある。吉田は初版後半の中に体力の発育の問題を用いている。小笠原道生は“作業能力”を用いている（体育生理学，目黒書店，1928）。これらの点はそれぞれの年代までの科学的知識の集大成であるといえる。

吉田はその後「体力測定」（藤井書店，1943）を著し，それぞれの体力測定の測定法とそれまでに彼が測定してきた各測定項目の結果をまとめている。

猪飼は体力の構成要素を分類し，近代的医学・工学的測定法を取り込み，資料の収集を開始する。とりあげたのは，東京オリンピック大会（1964）にむけてスポーツ界には異常な熱気が高まった時期に合致する。彼はスポーツトレーニングの具体的実践に近接し，多大な成果をあげる。もっとも実用的にはスポーツ科学が台頭していた。

一方，生物学の領域では国際生物学学会計画（International Biological Program）が立てられ，その中の1つのsectionであった，Human Adaptabilityに参画し，私もその仕事を手伝う機会に恵まれ，私の課題の概念形成に役立ったといえる。

筋力の測定から仕事は始まった。それと筋力群が発揮する筋力値を求めていった。生理学では最大筋力値（Maximal Voluntary Contraction; MVC）というが，私たちは日常発揮される最大筋力を“心理的限界値”とよび，特定の条件でさらに大きく発揮される筋力を“生理学的限界値”と区別した。この用語は豬飼・Steinhauseの論文にしたものだが，私はこの特定条件を薬物による大脳興奮に求める。この薬物は近年ドーピングの禁止薬物もなっている「アンファミン」である。この薬物投与中，筋持続作業を続けさせても筋力低下現象が起こることを見出し，筋作業における中枢疲労と末梢疲労の区分を試みる仕事に発展させた。

猪飼研究室を出てから最大酸素摂取量の間接法測定の仕事をすることにした。スウェーデンのAstrandの手法にしたがって日本人用のノモグラム（推定値早見表）を作成する。これで極めて多数の人たちの直接測定に携わって中，測定法に限界を感じたからである。その問題の第1，2は，疲労感度の状態を被検者に強いることであった。選手は比較的再現性の高い結果を示すが，一般人は決してそうではないものである。第2の点は，扱われてる測定値の相数である。研究の大勢は国際的にも個別比較のために“体重あたり・1分あたり”に換算したmlであるを値を扱うのである。例えば，最大酸素摂取量が3.50lであるときには10mlの信頼度であろうが，論議は1ml単位に及ぼされる。数学的にはいえば，有効数値は何桁かという事である。そこで間接法の仕事に取り組んだ根拠があったものである。

因果関係を示すには方程式がわかり易いということから次第にBiomechanicsの仕事に取り組むようになった。しかし，焦点は身体活動能力にある。そこで図に示すように加齢に伴うこの能力の変化を能力区分によって

* 大学院トレーニング科学系，身体動作学研究室
あらわしてみた。
以下の短文は月刊雑誌「コーチング・クリニック」（ベースボール・マガジン社）に載せられたものから抜粋したものである。各章の末尾に入れた（ ）内の数字は記載年・月を示している。

I. 走・跳・投は基本運動か？
ベルリン大会後に生まれた誤解

オリンピック・ベルリン大会（1936年）は、第二次世界大戦前に行われた最後の大会であった。この大会では日本選手が水・陸の競技で大活躍し、国内の応援も熱狂的だったようだ。

ベルリン大会は、当時の日本の記憶に深く刻み込まれた。“前体がんばれ！”の絶叫でアスリートに代表されるオリンピックの活発さはこの大会が最初であったほか、第二次大戦中にこの大会の記録映像が国内で上映されたこと、さらにはこの映画がベニスの国際映画祭（1939年）で金賞を受賞したなどのことがあったからだろう。その社会的背景には、当時のナチス・ドイツと我が国の国策が近く、自国民の民族意識を高揚させ、団結を強調するという全体主義があったためと思う。

世界中が大戦に巻き込まれ、それぞれ体力の研究が進展し、国際的傾向をみることができる。我が国では体力研究検定テストに代表されるように青少年が主な対象となっていた。

これらの時代を背景として走・跳・投運動は体力を表
現する基本運動であると考えられるようになったと言え
る。走・跳・投の運動様式（movement pattern）、例え
ば、陸上競技の各種目のタイムや距離は、確かに、
両上肢・体幹・両下肢それぞれの運動能力的一面を表
す。しかし、それはスポーツの種目に対する能力を表
しているだけであり、それが“人間全般の基本的な運動”
といえるだろうか問題のあるところだ。

種目ごとに異なる運動の特性

体力という言葉は、一般的用語である。陸上競技には、
走運動を行うトラック種目と跳・投運動を行うフィール
ド種目がある。だが、1人の選手は主に1種目に参加
するだけで、走・跳・投の全運動を行う種目は混合競技
しかない。この競技の選手は鉄人がいわゆる、陸上競技の
中でも特別扱いされている。

陸上競技の走運動の走破時間は、約10秒（男子100m）から約20秒間10分（男子マラソン）という短長がある。選手の特徴も短・中・長距離型と区別されている。

跳種目では、高さを競うものの水平距離を競うものと
ある。これらはすべて、選手の全身が通過した距離を
争う。そこで、跳躍中は両腕や胸体、あるいは長い膝部
を巧みに順次操作して距離を伸ばそうとする。

投種目では、特徴ある投げ物を使う。砲丸は実に重く（成人男子用7,257kg）、砲丸を肩から前方へ引いて
投げてはいけないルールより、肩からの突き出し投げ
（shot put）をする。また、長い棒状の矢や球を画面か
ら押しつぶしたような円盤は、力を加える場所が限られ
てくる。投げ方をやりはオーバーハンド、円盤はサイド
ハンドの振り出し投げ（swing throw）に収束されてく
る。

それぞれの技術を要する陸上競技の運動様式は、ほか
の競技にそのまま当てはまるわけではない。

走運動は広いグランドで行う競技（サッカー、ラグ
ビーなど）に見られるが、勝負の決定的瞬間には急
発進し、情勢を凍結するときには緩やかに位置を変えて次
に備える。100mもの距離を一気に走ることは希である。
中程度の広さの競技場を使うスポーツ（バスケット
ボール、ハンドボールなど）では、緩急自在の走スピード
の変化が必要である。エネルギー供給の配分からとい
えば、有酸素性・無酸素性の需要が相半ばし、無酸素性能
力の高い選手またはチームが勝つことになる。ところが、比較的貧しいコートを使う競技（各種競議、卓球、
テニス、バレーボールなど）では1〜2歩のスタート動
作が勝負を左右する。これらの競技で“飛びつく”動作
がよく見られるのはそのためである。
多くの競技に見られる跳躍動作は、身体の一部、例えば手、が着地の位置に達すればよい。サッカーのヘディングでは、ボール目がけて高く飛び上げることや身体を地面と平行にして飛び込むこともある。バスケットボールではリバウンドが床面から305 cmに設定されているので、直下からなら垂直跳躍、相手選手を制してゴールに近付くために跳躍するなら斜め方向への跳躍になる。また、パレーボールのようなネット型競技では、ネット間隔で高い位置をとることが相手コートへの攻撃有効面積を増大させる。

投擲動作は、投げ物を扱うゲームでよく見られるが、手の使用を禁じているサッカーやバレーボールでも、サイドライン外からのスローインでは投擲動作を行っている。さらに、野球のバッティング動作やテニスの両手によるバックハンド・ストロークも、投げ動物と同じ原理の動作としてとらえがことができる。すなわち、四肢末端部の速度を身体前後分の各速度加重させるという動きの原則を見出すことができる。

時代によって変わる体力観

「健全な身体」は、生まれてくる子どもに対して親が願うためだけの言葉ではない。両腕・体幹・両足の健全な動きを通るべきという考え方が、研究者のかなに起こったのは19世紀初頭である。フランスのレニエ（Regnier）は最初に握力計を作り（1807年）、次第に筋力測定へと発展させた。イタリアのモッソ（Mosso, A.）は指の可動範囲を調べるエルゴメータ（作業計）を作った（1890年）。産業革命後しばらくして、繊維産業に従事する系切の労働者を調べていたときを思える。世界大戦中の日本では走・跳・投を中心とした運動能力の測定が行われたことを紹介したが、それも時代が求めた体力観であっただろう。

それでは今、将来を担う青少年の体力について、どのような観点でとらえたらよいのだろうか。私は、スポーツで必要な体力と日常生活で必要な体力とは分けの扱いが必要であると考えている。長距離ランナーのなかには、ゴールに倒れて倒れてしまう人がいる。彼らには、スタートからゴールまでの間に果たすための体力が必要である。日常生活の場面でも電車やバスに乗るために行ったり会社に行くことが仕事の一部であるが、そこで倒れ込んだような体力の使い方ではないはずである。電車やバスに乗って会社に行き、そこで仕事をこなし、帰宅して余暇を楽しむための体力を残しておかなくてはならない。

ところが、日本の学校体育で行われている運動をみてみると、全力運動のみが中心になっている。それは、走・跳・投が人間の基本的運動であるというベルリン・オリンピック後、さらには世界大戦以来の考え方に引き継いでいるためではないかと疑ってみたい。

とりという時代を考えた場合、走・跳・投という運動は、市民のどれもがこのけん知る基本運動とはいいえないだろう。体力に関する研究が深まったことにより、人それぞれに体力要素に特徴があることがわからってきた。これが体力の特異性（specificity）といわれるものである。それを踏まえて現代では、自分の体力の特異性に合ったスポーツを選び、生涯にわたってそのスポーツに親しみが望ましいと考える。つまり、よりよい生活を実現するためのスポーツという視点が求められている。

これらの時代を見据えた体力観は、現代の一般市民のどれもが、いつでも、どこでも運動を計画し、それを基礎にして全活動に発展させていく過程を確かめていく必要がある。つまり、地上で生活をする二足行動動物としての基本運動であるウォーキングやジョギングの水準から、まずは運動を計画していく必要があるのではないか。(1996.5.)

II. 運動処方一再考

運動処方という用語を最初に取り上げたのは、私が野球研究室に入れた1960年であった。当時、野球指導者はこの用語についていろいろ考えをめぐらしていたことをあとで知る。研究室の主要テーマに「青少年の運動処方に関する研究」が設定され、私が国で最初の人間用トレッドミルが製作されることになっていた。この研究は防災人青少年の性・年齢に応じた体力向上のために、適切な運動の強度、その持続時間、及び運動実施の頻度を決めていくこと、がこの研究の狙いだ」ということであった。

当時、猪四輪教授は米国留学から戻れたばかりで海外情報も豊富なようであった。「運動処方」という言葉は、ドイツでは運動生理学者のDr. Hollmann, W. や Dr. Reindell, H. らが "Dosierung" を使っていたといい、英語ではこれに相当する用語は "prescription" ではないかと考え、留学先教授であったDr. Steinhause, A. H. に相談したところ "optimal standards of exercise" という。その理由は、dose とは処方、処方箋という意であるので、運動プログラムの場合には薬物処方のように厳密さを要しないだろうから、といわれたのである。

適応能

あらためていうまでもなく、生物には適応（adaptation）という性質があると古くからいわれてきた。実験
生理学を樹立したClaude, Bernardは、生物体が諸々の物質によって構成されていることから、これを内部環境として外部環境と区別したが、一方、進化論を唱えたDarwin, C. R. や、適者生存 (survival of the fittest) をいうSpencer, H. などは、生物は固定的な生物体ではなく、融通のきいた動的適応能をもって、としていたらしい。

この適応能とは、生物体の生活を円滑に維持するため、外部環境の変化に応じて、内部環境の働きを変化させ、安定させる性質である。もちろん、人体にもこの働きをする性質があり、この性質は恒常性といわれる。酸素の補給、体温の維持、血液の体素イオン濃度（pH）の安定、それに体水分量とカリウム・ナトリウム・糖分などの一定水準を保っている性質である。

運動を開始すると、人体は内部環境を維持するために息をはずませ、脈拍をかため、体温が上がってしまう。汗を通じて体温の調節を図り、これが失われればそれを補給する。これらは、行った運動に対する一時的適応現象である。

一方、新しい自然環境に長期間さらされると、生物体の内部環境もそれに応じて変化を起こし安定させると、いわゆるエネルギー効率を高める。感覚的にいえば慣れた状態を示す。これは熟化 (acclimatization) と呼ばれる。さらに、人が人工環境を作り出すことができる、日常生活中、冬季の暖房、冬に暖房を利用する。これは人体の恒常の性質を保護するために行われるものである。一方、人間の食料生産の手段にも、畜産や園芸などの領域で積極的に利用されていることも知っている。

生物の生息のバランスや地球の保全についてはここでは触れられないが、少なくとも人間においては、健康で豊かな生活という価値に向けて、人工的な環境づくりが期待できる。それがスポーツ・トレーニングや健康増進のための身体運動である。この身体運動の効果は、それにかかわる研究者がプログラム作成者や受益者としてのプログラム利用者や体験を通して効果を認める人々が増えてきたと思える昨今である。

最近の運動処方

運動処方が行われている領域を概観すると、それぞれの目的に応じての領域区分ははっきりしてきたといえる。それぞれの領域を大別すると次のようになる。

- 競技成績改善のための体力水準の向上
- 発育発達支援
- 健常人の日常生活までの回復支援
- 加齢に伴い自然衰弱する身体条件の刺激

大切なことは、それぞれの領域で運動の方法とその効果について、科学的研究の水準ばかりが高まったのではなく、実技を得たという実験者が増し、それらを通じて、積極的に利用する周辺者の増加傾向がみられることである。そこで、それぞれの項目に対して若干の私見を述べてみる。

1) 競技成績改善のため

1960年（ローマ）、1964年（東京）のオリンピック大会の頃から、スポーツ科学の研究が国際的に始まった。私たちは当時の大選手たちの体力測定に関わり、直接その人たちの身体に手を触れさせてもらった。その人たちは今や大コーチ・監督となり、現代の選手たちはその3代目に相当するのではないか。

今や、プロ選手を含めて現役の選手では体力トレーニングに関心が高まり、それを探求しないときはいないだろう。彼らはトレーニング・メニューを称えて、個々人に適するであろう運動内容に取り組んでいる。ただ、保守的な世界だけに、先輩が取り組んできた運動プログラムを握るだけの人も増えていることも指摘したい。

トレーナーを採用しているチームが増大している。プロチームはもちろんのこと、実業団にも一般化されていっている。トレーニングは試合に効果を求めるものであるだけに、試合に近づくにつれて、競技中の運動強度・パワーに近似した内容を取り組むように改善されてきたようにみえる。

2) 発育発達支援

第2次性徴が始まる小学校高学年生から高校生までの青少年の時期が対象領域である。学校教育の目的が全人教育であり、体育科教育の目標も多岐にわたり、教科の独占性を改めて問いたい。だが、団体体育教育をとっていることから、学習内容の一部に組み込まれているが、その実際的現状は挙げにくいだろう。

3) 運動能の回復

医療の領域のなかでリハビリテーションといわれ、運動療法士・理学療法士が医師の指導のもとに、運動刺激を患者に施している。整形外科に通う運動器疾患の人だけでなく、代謝性の疾患、特に高血圧症や軽度の糖尿病患者らにも運動実施が勧められている。また、精神病の患者にも運動療法を施したり、内科でも入院患者の体力低下防止のために、さらに、心臓外科手術後の患者にも運動リハビリを施したりしている病院もあらゆるようになった。

これらは日常生活が送れるだけの運動能力の獲得が目的となっていて、術後に心配した人たちはそれに限りの恩恵を受けているといえる。病院との対応であるだけに、専門性の高い領域である。
運動の視点

4) 加齢に伴う自然衰退防止

高齢化社会の出現が叫ばれてから久しく、国民総医療費の膨張や高齢者による年金問題も絡んで、国の政策にまで大きな影響を及ぼしている。体力・運動能力の自然衰退は、寿命が延長されたことによって拡大して観察できるようになった。

学校体育から解放され、人生が安定してくると、まず30代になって身体つきの変化に気づくようになり、80歳過ぎまでの50年想定した体力・運動能力についての観点が学びえる。「生活維持のための労働と日常生活の中での栄養・休養と身体活動（activities of daily living: ADL）」のかかわりが、健康状態に変化をもたらしてくれる。

この領域における運動実践の目標は、次のように挙げることができる。

・特別な疾病の危険因子を少なくする
・体力・運動能力の低下を抑制する
・日常生活の活動性を高める

この特別な疾病とは心臓の虚血性疾患のことで、体脂
肪量が多くなるにつれて高血圧症・高脂血症から罹患率
が増大することが指摘されている。これらは、先進国の死亡率の高い疾患である。この危険性を少なからするために運動実践が求められている。日常生活で活発な身体活動を通じ、これはこの疾患の罹患率の低いうことが示されてから長い。

加齢に伴って体力が低下すると、それは、その原因は不活発な生活を送るようになるからだといわれた。スポーツの高齢者大会の記録が引用されたりしているけれども、話題的な事例報告が多く、科学的にはそれが明らかにされたいええ。少なくとも、見た目には大多数の人の体力・運動能力は低下を来しているので。日常生活の中で起きた転倒・骨折からもたらされる死きたきりの生活は、この傾向を拡大する。建築家たちは家の中の段差をなくし、トイレ・入浴時のエネルギー消費を少なくする工夫を提案しているが、一方、運動指導者たちは身体の運動機能を含めた内装環境、例えば感情の改善をもっと唱えて良いように思う。

これまで述べてきたように、現代の運動処方は、科学者の興味よりも実践家の実用効果が期待されている。幅広く利用されるようになった理由は後述に適切な運動処方に近づいてきたからであろう。 (1997.7.)

III. スポーツ：高年と少年

成年になる構え

巷に伝えられる教育界の現象……小学校では学級崩壊

が進み、街の中学生や高校生の行動の生態が変わってきたなどが目を引く。日ごろの研究室で付き合っている大学院生たちは生活・文化の時代差を感じられ、他の考え方が動向に上手く合わせているだけで、自ら主張が少ないと思う。大阪で若者を愛称的に呼ぶ、いわゆる“俺派”はいない。

日本の学校教育が見直されようとしている。家庭も、地域社会も、教育委員会も、みんなが今の若者に戸惑っているように思える。教育界のままならず、あらゆる機構がグローバル・スタンダードといわれる国際的な共通基盤に基づいて考えようとしたが、どの国でも、いつの世にもジェネレーションギャップはあるに違いない。年長者は地域社会や職場での経験をとことんこれからの世界を生きる若者たちをある種の枠内に当てはめると思う。だが、今の若者は“何であれ”のように年長者にはみえる。体のプルックホールのように、みんなが行き末が混沌としているよう見通せない。安心できないのである。

国会でもこれを捨てるおかることができないので、よいよ基本的教育問題に取り組むことになったようだ。

2000年早々の通常国会に教育基本法改正法案が提出されると報じられている。おそらく、彼が住民と国家はどう関連するかが議論されるのであろう。まだまだ“国益の価値観が続くと推測するのだ、また、国家同士の付き合いも考えていきとすれば、優劣の能力交わし、互いの世界の釈り合いが問題となる。

この問題は個人にとって他人より優れることと仲間
との共生との交点の選択になる、といえる。だが、個人の能力は様々なものであるので、互いに優しい側面を生かし、他者の前へ側面を投げ込むことによって集団の能力を一段と高めることが期待できる。

1990年代最後の体育学会

幸せなことにこの学会は‘99年に50回目を記念
してようとした。この学会もいろいろな細分化が進んで、天体のプラックホールのような感じがある。参加学術団体34、名義参加と稱して4団体が名を連ねた連合大会であったので、それぞれの団体には集結する錦の一団と、それに対する賛同者があり、集団となって各代表が立てられている。

互いに関心を持ったテーマに従って共催シンポジウムが開かれていたが、個人的につき、全出席で7つのシンポジウムにしか参加できなかった。私が参加する場面
は研究する学術と市民の実験生活との連接度を確かめることにあった。各研究課題と現場との課題とは必ずしも一致しないような研究もあると思うのだが、私にとって
はやはり実践場面に興味がある。このコラムでは表題と関連する「マスターズ・スポーツ」と「ジュニア・アスリートとトレーニング～子供の全国大会のあり方を考える～」というシンポジウムに限って私の見解を述べるところにする。

＜マスターズ・スポーツ＞

陸上競技、水泳競技、テニス競技、マラソン競走それぞれについての話題が提供されていた。すべてのシンポジウムの主は選手を通じてした大会に向けられていた。陸上、水泳関係では世界大会、他の種目については全日本大会を中心にしての歴史、参加人数、各種種目の優劣記録が話題の中心であったと思う。その参加者数に年度別の縦断数も記録し、フロアーからも活発な意見が出されていたし、それらについて熱心な論戦も行われていた。

ところでは、マスターズ・スポーツは私にとっては興味のある問題で、一年前に調査をしたことがある。この調査結果については本誌のこのコラムで既に触れられた（'99年2月号）。そこに記しておいたが、この調査の総括主は日体協のスポーツ教養本（B級）の中で「中高年者の運動処方」の章の一部となっている。マスターズ大会参加年齢は、陸上競技では初期の頃（'81年から開催）には女子30歳、男子35歳であったものが近年ではそれぞれ5歳ずつ引き上げられている。水泳では18歳から参加することができると記載。今回の学会のシンポジウムに参加して、シンポジウムの水泳関係者から真似を卒業した水泳愛好者は、大会や試合に親しむ機会が少なくなるから18歳からとされたと聞いた。

陸上競技では'99年に20回、水泳は17回の大会を数えたことになる。これを聞いてこの大会はみんなの大会であろうと感じ取る。それが実際の選手の内である。そして競技の全国大会に参加した人たちの中で、若い彼らにこの競技を行っていなかった人が約34%もいたというシンポジウムの報告は私にとって新しい情報であった。

シンポジウムの全員が、全国または世界大会での竞技記録に注目してに、私のこれまでの調査の視点を越えるものではなかった。その理由は現在まで残されているそれらの記録以外の資料がなかったことに起因した。

私はこのシンポジウムで、シンポジウムの一人に促されて発言の機会を持った。しかし、私の調査以上の情報を求めて出席した。その理由は「マスターズ・スポーツ」と「マスターズ全国大会」とは別の概念にあると考えたためである。と、換言すれば、予選会あるいは日常の競技へのマスターズの参加状況が、それぞれの競技スポーツで実態が示されるのではないかと期待していた。

例えば、若いころに経験のなかった人たちについてはは予選会参加者について調査の機会を広げれば、この割合が更に高価を期待されると思われる。しかし、全日本マラソン大会の最終ランナーの記録はどうであったのか、大会開催規則で打ち切り時間を決めていないことを期待する。例えば、昨年（'98年）のホノルルマラソンでの最終ランナーの記録は11時間40分くらいだったと記録するが、仮に42,195 mを日本人の場合90分で行ったりの変換点スピード（120 m/分）で走破時間を計算をすると6時間1分36秒となるのであるから、ホノルルマラソンの最終ランナーは、ピクニック気分で途中に軽食をしたり、風景を物語したりしながらゴールに達したことが想像されるのだ。マスターズ・スポーツの全体像をとらえたものである。

＜ジュニア・アスリートとトレーニング＞

この問題は、約10年前に日体協の関連委員会の中で論議されたことがある。私もそのときの委員会の一人であり、この年齢層の全国大会を持つことは反対したことを思い出す。

このシンポジウムについては本誌の学会報告欄でも扱われるらしいので、各演者の主張とその内容についてはご参照されることを願っている。ただ、青少年の育成問題は国民教育の原点に基づくことは、自明の理であろうと思える。

スポーツ愛好家

このコラムの冒頭で“成人になるための構え”的道すじを考えてみた。その到達目標は、自己責任といわれるよりも、自立した人間の育成を、思われる。リスクとリターンの関係の選択は、本人の自由に基づくものだろうが、未成年者といえども好きなことはやめられないのではない。全国大会を世話することもよいか、私にとっては、子供たちが体力差を認め合いながら、好きなプレーができる場所を確保してやりたいと思う。学会がその筋の専門家の集団であるとすれば、専門外の人たちに提言できる“position statement”的発言があってもよいと思った。

マスターズ・スポーツは、性・年齢・個人差という誰もが逃れることのできない要素を、経験を通して区別できた成人が、得意な競技を選択することになり、楽しみっているのではないか。いい換えれば、遺伝子機構の本体であるデオキシリボ核酸（DNA）の支配を経験的に知った人たちが、得意なスポーツを愛し続けるっているのだろうと考える。
運動の視点

それについても、若いころに競技に参加していなかった人たちがスポーツを愛好する場を見つけるたとえ、通り去
りそして人の触れ合い方と身体の特異性を明らかにしていく
仕事に連なるのであろう。

(2000.1.)

IV. 生活技術と身体運動

街の歩道で

歩きながらいろいろなことを想像する。数ヶ月前は前
日の日に降った雨でお床の地面が凍って滑らかになっ
ていた。あのときは冷たい風がこのあたりで吹いてきただけ。
だが今夜は、真夏の太陽が照りつける、木立の中の空気も
風で冴えている。また、その辺には寒い風も吹いて
いても、今日は特に触れる花はもう赤い花咲きの見竹
桜。また、黄色の大輪をつけた日向葵が押し上がって
いる。やがてスケの摘やスコップの花が秋風を誘ってく
れるいかがいしい、などと考えながら黙々と歩く。毎日
1万歩を目指してやがて満20年になる。

この歩道は私が住む街、東京市南部の東側に接するK
市のものである。この市は、面積が約6.4平方キロ、人
口は約73,000名というとても人口密度が高い街であ
る。昔は村であったが、それから高架や路などが
現在市街化されている。今から50年前の風景は田
園そのもので、歩道が造られた場所には田舎や中央を
縦断する用水渠が流れている。公的にはいえば六郷用水の
支流である。記録をたとえばその平均幅員は10 mと
ある。曲がりくねったこの川は下水管を埋めて暗渠とし、
表面を緑地帯にしたものだ。

現在のコースは全長2.2 km、平均幅員は約3 mであ
る。その両側には樹木が約4,500本植えられ、海棠、ぼ
け、白・紅の梅、木蓮、吉野桜に八重桜、それに紫陽花
のように季節の花を見ることができる。もちろん落
葉樹や針葉樹の木大もあり、桜の花の甘い香りが流れる
ときもある。

ウォーキングの生活化

このコースを完歩するとき、普通の歩き方で27～
28分かかる。普通の歩き方とは幅が約70 cm、ピッチ
が約115歩/分というところだ。歩幅を80 cmに伸や
し、行進曲のピッチで、120歩/分で行くと、平均スピード
96 m/分となり約23分間くらいかかる。このような急
ぎ歩きのときは腰も疲れやすい。

イギリス人である小泉八雲が松江の中学校に赴任した
とき（1890年）に、広場で小学生が手を振って歩く動作
の行進を習っていた。と記録があるという（三浦雅士、
身体の箇条、1994年）。三浦氏は「かつての日本人の歩
き方はナンパ歩き」であったが、習わなければ手を
振って歩けなかったのだろうという。ナンパ歩きとは、
上半身を動かさずに足を運ぶこと、すなわち反動を利用
しないで歩くことが基本であり、右足と左手、逆に左
足と右手がそれぞれ同時に前に出るという動作である。

その根源は、農耕とはうそうどたく手足の運び方であ
り、また日本武術における慣り足の運び方が基本であると
いう（武智巧二、舞踊の芸、1985年）。この人たちは、
八雲がみた歩き方の作業は軍隊の団体行進のためであ
り、体育の授業で採用されたために、能・狂言、文
学、歌舞伎などに通じる個人の芸が阻害された、と断じ
ている。

運ぶ足と振る手を左右交互に動かし、反動を利用する
歩き方が効率がよいからであり、楽に感じられるのであ
る。いえ、それは心からも開放された歩き方とい
うことができるだろう。身体動作の加いうえに、この
ような自然な動きに対して、ある目的のための動作を、
修業を通して獲得する路すといえる。

われわれの動作の変容は、自然が加える中で、食
・行・住のその時代の変化に伴って行動様式も変化してき
ている。

身体移動と生活技術

地域社会における生活様式は目覚しく変化している。
日常生活に求める食・衣・住の材料を買い揃える商店が
変っていく。これまで、住宅の近くにあった個人商店が
消えつつある。それに代えて、大型店舗が進出してきた。
大型店舗にまで行けば、日用品の品は一揃えることができ
る。しかも手頃な値段であり、その建物の中の移動
方法も、エレベーターなど使用されている者が省エネ
にサービスする。

しかし、各消費者が必需品を買い揃えるには店舗まで
出向かなければならぬ。そして、購入したのものは自宅
まで持ち帰らなければならない。一般的に各家庭や大
型店舗までの平均距離は延長されたといえる。この延長
された距離に対する移動手段は歩行運動であり、生活技
術の1つである。

徒歩、自転車、バスや電車、あるいは、自家用車の利
用が数えあげられるけれども、それらの移動手段には操
作技術がより体力が必要とする。したがって、加齢に
よってこれらの要素が大きな低下が関わることになる。
この街の主婦は一般的に自家車を利用することにな
るだろうし、郊外の主婦ならば自家用車を携えても出
てくるだろう。万が一、中高年の人はもちろん、それらの運
わな人が多くなっている。

それぞれの住居で生活するためには、食・衣・住の必
需品の調達ばかりではない。生活の権利を守るために必
要な法的手続、あるいは受益できるサービスを利用するために市役所や町村役場へ出掛けすることになる。この行動はやがて宿泊の郵便局でかなら代替作業が行われる
ことになるのであろうか。

これからも加えて中高年者は病院や病院へ通院する手段
があげられる。加齢に伴って通院の頻度が増加してくる。
私たちの研究室の調査（1997年）によるとK市の中
高年者では徒歩と自転車によって移動する人が多いの
だが、加齢に伴って通院の頻度は増す。しかし、自転車
の利用度は低下していくのである。

地域保健法が本年度から施行され、保健所が地域保健
センターに改編されて場所も変わったところが多い。この
改編は、高齢化に伴う住民に対する保健サービスが焦点に
あると思われる。その中には健康運動サービスの提供も
考慮されている。

私たちの最近の研究

健康運動サービス施設に、何を利用者は期待するか
調べてみた。サービス事業が施行され、その内容が整え
られ施設が新しくなったとしても、利用者がこれから使
わなければ効果は得られないと考えてあるのである。私
の住むK市で調査した。これと比較するために群馬
県のO市と千葉県のK市を調べている。調査対象者は
65以上の男女である。

結果の興味あるところをあげると、東京のK市では
配偶者との2人暮らしが多く、群馬のO市では1人と
なっても若夫婦とともに暮らしている人がいる。
通院する手段は、両市とも徒歩が30％以上。次いで自転車
約20％となるが、バス・電車利用はK市が多く、一
方O市では自家用車の利用が多い。交通手段が大きく異
るためだろう。日常生活の中で健康のための活動は必
要かと問えば、認識は高水準にあるが、実は実践して
いるかといえば、50～60％と低下してしまうのである。
ところが日常生活の中でよく歩くかと問えば、K市では
約40％の人が、O市では約80％が歩くというのである。
これらの結果からみると移動運動の手段はやはり徒
歩運動である。

ところで、この研究プロジェクトの一環として、都の
公立トレーニングセンターの利用者の利用頻度を調べて
みた。場所柄もよく年間12万人が利用する施設であ
る。私たちの研究室では、ここを利用する人々に健康
運動プログラムの助言の仕事を持たせてみた。来館者は
トレーニング室へ直接行く人が多い。助言、相談室を回
る人はその約11％である。その中で、継続的に助言室
とトレーニング室を利用するのは、全体の利用者の約
26％であり、その週あたりの平均頻度は1.6回である。

これからの結果から、私たちは大胆に自主的にウォーキ
ングをする人たちを次のように区分してみた。

1. 健康運動を自覚的に行う人
2. 現状のままを確認しながら行う人
3. まだ改善を期待し実践する人

先に述べた遊歩道をウォーキングする人たちは、区分の
1に当る人たちといえるだろう。

私は、現代では目的意識をもって身体運動を行うこと
が大切だと思っている。横断歩道を渡る子供がこぞって
あせせる指導が行われる。都会では、歩行者のための信
号が青になっても、突撃でくる車がときどきある。泣
く子と地頭には勝てぬとは古来になってしまったが、
スピードを出す車には勝てぬ"が現代の実感ではない
か。

生活に必要な運動・動作として、我々の排泄後の処理
から食事の仕方までが家庭の中で仕付けられてきた。家
の中は静かに歩くもの、とも教えてくれた。しかし、
今はアクティブライフが求められる。それは、身に付い
た行動動作が除々にできなくなる人たちが増えてきたた
ために、これまでの正常な活動水準を意識させるスローガ
ンになっているのだからと思う。（1997.10）

V. みんなの身体運動

早朝ウォーキング

近くの広場までくると東の空が明るくなってくる。4
月15日の日の出は5:09だった。これよりも夏至まで
さらに速くなる。日の出戦ってウォーキングを始める
ことがある。これは既に動いている。自転車の手に荷台
には2列に並べられて30 cm以上も重ねてパックされ、
前後左右には200名がパックで入れられている。大きな集
合住宅の前には既に販売所の車が新聞の束を置いてい
る。黙坐でアルカイトをしたのだろう。帰宅を急ぐ者
人にも会う。

遊歩道に出て、耳のイヤホンは“ラジオ深夜便”から
“朝一番”に変わっている。既に何人か人がウォーキ
ングをしている。同じ方向へ、また行き交う人の殆どは中
高年者で、男女の差はない。早朝ウォーキングを始め
た最初のころは、静かに冷たい空気を吸いながらゆっくり
歩く人や、正面に向かって黙々と歩く人たちだった。
1人ひとりが孤立してウォーキングをしているように思
えた。ウォーキングの効果を述べ、これを勧める専門家
は多いようだが、個々の身体への効用だけを説明してい
るようだ。私の住む街のウォーク大会は集団で一方方向へ
進む形をとっている。

我が街の地域社会でのウォーキング。地域社会は、
同じ慣習を守って交わり、人とともに住む動物や植物を含めての生活地区といわれる。意を決して行き通る人びとも朝の挨拶を送ることを始めた。最初のうちは通り過ぎてから返事を送ってきたり、言って去る人も多かったが、ひと月も経たないうちに多くの人が声を掛け合うようになり、今では数歩手前から笑顔を見せてくれる若く婦人もできた。観察をしていると、誰もが挨拶の声やジェスチャーを交わしているのである。爽やかな朝の風景が地域社会に広がったように感じられている。

たかだかウォーキングといわれるけれども、しばらくして、挨拶の声の掛け方に特徴があることに気づくようになった。例えば、“はよう！”と気軽に返される人、“はよう・ございますます！”と後半を長引かせる人、“はよいから”は丁寧に発言し、ございますは口ごもるようにする人。さらには“おはようございます”と丁寧に発音する人などもいる。私はこれを2拍子型、4拍子型、8拍子型と区分して楽しんでいる。

専門家にいわせれば、歩行速度に伴う息の頓 onPause方による違いということだろう。歩く速さは、性・年齢・体重に伴って決まってくるようにいう人もいるが、私は「朝の元気度」を変えると考える。個々の生体の負担度、といってよいかもしれない。

日常生活の中で身体運動（ADL）

私は仕事柄、物事を微調整できることに習性があるようと思い思えるのだが、話題の内容が相手に伝わらないことに苦労する。だから学生たちに、理論を学ぶとは説明の仕方を学ぶことだと言っている。物事に注意力を向けよう。多くの人たちが行っている身体運動を、イメージできるようにしよう。そのイメージを確かめるために実際に場面に近づく、というのである。

例えば、各人の父母や祖父母の身体動作が教室において想像できるか、というのである。“道は立て、立てば歩け、親心”という。君たちは意識しないで歩く運動ができるようになったと思っているのだが、毎日繰り返して行い、いつの間にか反射的に歩けるようになったことも想像してみよう。

早朝ウォーキングのときに出会う1人の老婦人の話をする。腰をやめ屈めて毎日住まう。私の歩行速度は相当の人たちよりもやや遅い方がされているので、その老婦人とも私は同じ位の速さで歩く。あるとき、肩を並べて歩く機会があった。彼女の兄妹は6名もそうだが、今日は自分1人がになってしまった。最後に逝った兄は2年間寝たきりの生活で、その世話をずっとと負担、朝早く歩くことは有り難い。他人に迷惑を掛けることは辛い、など話しているうちに72歳だということもわかった。

このウォーキングはラジオ体操が始まる（6:30）までに切るためにそうだ。家の近くの八幡様で毎日ラジオ体操会に人が集まり、そのラジオを彼女が預かっているのである。それが終わると、自宅の家事をしてからボランティア活動に出席する。彼女のボランティア活動は、1人きりの老人宅へ出掛け話しかける相手をすることだそうだ。10時半や11時頃になってしまうこともあるが、1人きりの人は玄関を開けるとうっとうそうに声を出し、今日は初めて自分の声を出したというのだ、と。その人がいる時には、毎朝歩く運動は、家族の近くでできるし、第一に安かがだ。その上、元気であることを「確かめの実利」もあるというのである。

運動バスの中でこと

バスの道ずしの途中に何人かの身体障害者が昇降するバス停がある。そのほとんどが青年であって両脚の運動の不自由な人。しゃべり方がただだとしい人などを昇降にはそれなりの時間が費やされる。運転手も大忙しに扱い、乗客もそのテンポに合わせている。ある日の午後の帰り路、テニス同好会のメンバーからもいる学生を誘い、数人がバスに乗乗してきた。手だけに大型のスポーツバックをもち、それらを通路いっぱいに置き、2人掛けの席に1人ずつ座り込んだ。バスは混んでいないし、彼なりに気使ったのだろう後部座席に陣取っている。

いくつかのバス停を通ぎ、そのバス停から身障者の1人が乗り込んだ。彼は言葉がたどたくしく、脚の運びも十分ではない。この間も九九の掛け算を友達とやっていった。シルバーシートが空いているのに、この日はバスの後部まで進め“僕は脚が悪いから座らしてくれないか”と言うのだ。

同年配の青年たちはうとうと座るが、席を空ける。ばらばらすると身障の人は“バスが急停止すると危ないから窓際と替わって”と、これも早々と交じる。身障の人はもうやこのグループのリーダー格である。たどたくし会話は終点までいくのかという程度だが、学生たちはこれとも応える。そのうち“僕は肩組して押されてくれない”と言いつつ、青年たちは肩組をしたまま終点にたどり着いたのであった。人の生活の仕方の静と動の組み合わせに非常に興味をもった一瞬であった。

オリンピック選手

この稿を書いている最中にも、シドニーからオリンピック選手たちの成績が報じられること。だが、この情報は素質に絡まれ、体質に合致したトレーニングの効果を得たうえで、選手として選ばれ、競技で得る関係での結果である、と思える。競技種目も相当多い
と、改めて気付かせてくれる。多くの競技の特性と自己の適性を整合させた競技選択の結果にあらわれた成績なのでだろう。

だが、我々市民の眼から見れば、選手たちはおしなべて優れた才能を発揮している人たちとみえる。成績は今もなおである。出場した選手たちすべては市民から遠い憧れの人たちでしかない。それに寄り添う科学的な人たちは選手たちが優れた人だという必要はない。なぜ優れていたのかという理由を探しているように思える。

測定された項目だけが競技結果を決定する要素ではなかったろう。競技する身体活動についての要素の中には、まだ測定できないものが多くあると思う。だから、測定項目と競技結果との関係が、数学的にいえば第1次近似の関係にあることを示す必要があるのだろう。

公念か、精神力か、策戦・戦術・戦略というようなな、スポーツ以外の世界でも何となく納得できるような説明をすると、市民としては、世界中の1・2を争う選手たちだからそれはそうだろうとなってしまう。

激しいトレーニングに耐え、オリンピック選手に近づく激しい身体運動の繰り返しの場面、日常の身体運動では微小な変化しかない身体要素の変化が拡大してあらわれてくる。それは微粒子が、顕微鏡によって拡大され、あるいは電子の運動が、増幅回路を通して拡大されることによって気付かせてくれることに似ていると思う。だからこれを通して誰もが身体運動を見つめ直すことができると考えている。

本講演はこの稿をもって幕引きとなることになった。長い間、わたって執筆させていただいた。読者の皆様はじめ関係者の方々、ありがとうございました。

(2000. 12.)