Studies of Staphylococci Isolated from the MEN of KENDO throughout the Year

Kazuyuki Tanaka, Asami Endo, Tetsuaki Osafune, Makoto Yagisawa, Daizo Hakamada and Kunio Shizawa

In the present study, bacteriological examinations were carried out to get information about Staphylococci in the MEN (a face protector) of KENDO (Japanese fencing) during the four seasons. Staphylococcus saprophyticus, S. cohnii, S. hominis, S. simulans, S. epidermidis, S. warneri, S. haemolyticus, S. capitis, S. xylosus, S. sciuri and S. lentus strains are found from the MEN during each season were rapidly identified with a Gram-Positive Identification Card used in conjunction with the Vitek AutoMicrobic System. Staphylococcus saprophyticus strain was most frequently observed in all seasons, followed by S. cohnii. Staphylococcus epidermidis and S. saprophyticus strains have recently been noticed as the bacteria of opportunistic infection in the clinical medicine. Staphylococcus aureus is a coagulase-positive bacterium. We found that no S. aureus strain which causes skin and wound infections was identified in the MEN of KENDO during the four seasons.

Keywords: Staphylococci, Identification, MEN (a face protector), KENDO (Japanese fencing), the Vitek AutoMicrobic System

The present study was performed to determine the occurrence of Staphylococci in the MEN (a face protector) of KENDO (Japanese fencing) during the four seasons. Staphylococcus saprophyticus, S. cohnii, S. hominis, S. simulans, S. epidermidis, S. warneri, S. haemolyticus, S. capitis, S. xylosus, S. sciuri and S. lentus strains were found in the MEN during each season. The most frequently observed strain was S. cohnii. Staphylococcus epidermidis and S. saprophyticus strains have recently been noticed as bacteria of opportunistic infections in clinical medicine. Staphylococcus aureus is a coagulase-positive bacterium. No S. aureus strain which causes skin and wound infections was identified in the MEN of KENDO during the four seasons.

Keywords: Staphylococci, Identification, MEN (a face protector), KENDO (Japanese fencing), the Vitek AutoMicrobic System

The present study was performed to determine the occurrence of Staphylococci in the MEN (a face protector) of KENDO (Japanese fencing) during the four seasons. Staphylococcus saprophyticus, S. cohnii, S. hominis, S. simulans, S. epidermidis, S. warneri, S. haemolyticus, S. capitis, S. xylosus, S. sciuri and S. lentus strains were found in the MEN during each season. The most frequently observed strain was S. cohnii. Staphylococcus epidermidis and S. saprophyticus strains have recently been noticed as bacteria of opportunistic infections in clinical medicine. Staphylococcus aureus is a coagulase-positive bacterium. No S. aureus strain which causes skin and wound infections was identified in the MEN of KENDO during the four seasons.
生・公衆衛生学の面から、稽古後の「面」に及ぼす各種消毒剤や殺剤剤の効果を適切に把握するため、それらで処理を行った「面」を迅速自動細菌検査装置により、細菌叢の動態を経時的に追跡している。

本研究は剣道防具「面」について、人体の各部位や自然界に広く分布し日和見感染、化膿性疾患や食中毒の起因菌として注目されているグラム陽性球菌 Staphylococcus に着目し、迅速自動細菌検査装置を応用して、最初にそれらの分離同定を試みたものである。その結果、Staphylococcus 属は「面」の顔部領域から年間を通じて 11 種が検出された。これらの Staphylococcus はすべてコアグラーゼ試験陰性を示すことがわかった。一方、多彩な感染症と食中毒を起こすことが知られている病原性黄色ブドウ球菌 S. aureus は剣道防具「面」の顔部領域からは、年間を通して分離されないことを明らかにしたので報告する。

方 法

1. 試料の採取

日本体育大学剣道部部員（男女）から無作為に 20 名の選び、剣道防具「面」の細菌叢について、継続的に 1 年間の調査を行った。試料採取は、剣道の練習が終了直後に、使用した「面」の内部の左側顔部領域にカウントタクト（日本ビオメディー KK）を接着し、カウントタクトアプリケーター（日本ビオメディー KK）によって、カウントタクト全体へ 500 g の圧力を 10 秒間かけて採取した。

2. 培養試験

カウントタクトで採取した試料は恒温器（ヤマト IC-600）で 37℃、24 時間培養を行ったのち、さらに自然環境条件、剣道防具が使用される温度で 3 日間放置し培養した。次に、カウントタクト上の菌叢の形状や集落の色などを観察して、ハートインフェジョン寒天培地（栄養化学株式会社）で用いて各細菌の分離培養を行った。さらに、ハートインフェジョン寒天培地上に純培養した。

3. グラム染色、カタラーゼ試験およびコアグラーゼ試験

純培養した各菌株について、迅速自動細菌検査装置により判定するために、Staphylococcus 属と思われる試料の選択を行った。すべての試料はグラム染色を行った後、光学顕微鏡（Nikon）を用いてグラム染色陽性球菌であることを確認、コアグラーゼ試験を行った。次にカタラーゼ試験陽性菌を選別し、迅速自動細菌検査装置で同定した。

4. 鑑別培地による Staphylococcus aureus の検出

病原性黄色ブドウ球菌 Staphylococcus aureus を鑑別するため Baird Parker+RPF 培地を使用した。菌液を当培地表面に塗布し、37℃の恒温器で 24 〜 48 時間培養した。コアグラーゼ陽性の S. aureus 集落は Baird Parker+RPF 培地上では半透明のハローを形成する。RPF にはウサギ血漿、牛由来フィブリノーゲンを示す。

5. テストカードの選択と自動同定法

細菌の形態が球体でグラム染色およびカタラーゼ試験陽性であることを確認し、同定用テストカードを適切に選択した後、カード内へ菌液の充填を行った。テストカードはプラスチック製で、形成された 30 のウェルから、各々に生化学性状基質などが封入されている。テストカードは迅速自動細菌検査装置（VITEK および ATB Expression）で 35℃、1 時間ごとに 660 nm の LED で測定され、コンピュータで処理の後、プリンターによって成績がプリントアウトされ自動的に細菌の同定が行われた。

6. 走査型電子顕微鏡

剣道防具「面」からは年間を通して、S. saprophyticus が高頻度で検出される。Staphylococcus saprophyticus を液体培養し、SEM pore（JEOIL）上に固定した。次に、

<table>
<thead>
<tr>
<th>Staphylococcus 属</th>
<th>コアグラーゼ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus capitis</td>
<td>(一)</td>
</tr>
<tr>
<td>Staphylococcus cohnii</td>
<td>(一)</td>
</tr>
<tr>
<td>Staphylococcus epidermidis</td>
<td>(一)</td>
</tr>
<tr>
<td>Staphylococcus haemoliticus</td>
<td>(一)</td>
</tr>
<tr>
<td>Staphylococcus hominis</td>
<td>(一)</td>
</tr>
<tr>
<td>Staphylococcus lentus</td>
<td>(一)</td>
</tr>
<tr>
<td>Staphylococcus saprophyticus</td>
<td>(一)</td>
</tr>
<tr>
<td>Staphylococcus sciuri</td>
<td>(一)</td>
</tr>
<tr>
<td>Staphylococcus simulans</td>
<td>(一)</td>
</tr>
<tr>
<td>Staphylococcus warneri</td>
<td>(一)</td>
</tr>
<tr>
<td>Staphylococcus xylosus</td>
<td>(一)</td>
</tr>
</tbody>
</table>
迅速自動細菌検査装置による細菌菌の研究

結果

1997年4月から1998年3月まで1年間，日本体育大学深沢校舎における剣道部員20名の剣道防具「面」由来の微生物に着目し，迅速自動細菌検査装置を用いて，特にStaphylococcusの検査を行ったものである。

表1に示すように，年間を通じて「面」からStaphylococcusが11菌種同定された。すなわち，S. saprophyticus，S. cohnii，S. hominis，S. simulans，S. epidermidis，S. warneri，S. haemolyticus，S. capitis，S. xylosus，S. sciu. S. lentus が検出された。Staphylococcus saprophyticusは年間を通じて最も高頻度に分離同定され，次いでS. cohniiであった（投稿準備中）。したがって，S. saprophyticusは「面」に由来する代表的なStaphylococcus菌といえる。図1はそのような「面」から高頻度で検出されたS. saprophyticusの走査型電子顕微鏡像である。Staphylococcus saprophyticusは直径0.5〜0.1μmで，球体の細胞である（図1）。Staphylococcusの特徴は不規則な，いわゆる葡萄の房状配列を呈する。図1の矢印は2分裂中のS. saprophyticus細胞を示している。表2.3は迅速自動細菌検査装置VITEKでカードタイプGPIを使用した結果を示している。すなわち，S. saprophyticusのウェルの反応をコンピュータが自動的に読み取ったものである。

図1 剣道防具「面」由来Staphylococcus saprophyticusの走査型電子顕微鏡像
Staphylococcus saprophyticusは剣道防具「面」から，年間を通じて高頻度に検出された。走査型電子顕微鏡像が示すように，ブドウ球菌特有の房状の複雑な配列をしているのが観察される。矢印は分裂中の細胞である。スケールは1μm。
表 2 VITEK による *Staphylococcus saprophyticus* の同定

*Staphylococcus saprophyticus* 属の中では *S. saprophyticus* が年間を通して高頻度に検出された。

VITEK では 15 時間で、95% の確率で *S. saprophyticus* が同定される。バイオコードは表 4 に示す。

<table>
<thead>
<tr>
<th>日時: 03/09/99 14:25:13</th>
<th>bioMerieux</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSVTK-R05.04</td>
<td>MAN ユーリ Vitek 結果報告</td>
</tr>
</tbody>
</table>

Vitek ID: 000000-0 カタルラーゼ+ コアグラーゼ-

カードタイプ: Gram Positive Identification Card (GPI)

測定状況: 終了

経過時間: 15 時間

菌名: *Staphylococcus saprophyticus*

バイオコード: 77157030040

95% *Staphylococcus saprophyticus*

1% *Staphylococcus simulans*

報告待状態: なし

一同定試験に組み込まれた追加反応--

95% *Staphylococcus saprophyticus*

1% *Staphylococcus simulans*

表 3 VITEK による病原性細菌 *Staphylococcus aureus* の同定

*Staphylococcus aureus* は黄色ブドウ球菌と呼ばれ、最も病原性が高い。*Staphylococcus aureus* は標準株として、東京医科歯科大学から分与されたものについて同定試験を行ったものである。表に示すように、コアグラーゼ陽性で、本学の VITEK による同定試験の確率は 98% であった。バイオコードは表 4 に示す。

<table>
<thead>
<tr>
<th>日時: 03/04/99 16:45:24</th>
<th>bioMerieux</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSVTK-R05.04</td>
<td>MAN ユーリ Vitek 結果報告</td>
</tr>
</tbody>
</table>

Vitek ID: 000000-0 カタルラーゼ+ コアグラーゼ+

カードタイプ: Gram Positive Identification Card (GPI)

測定状況: 終了

経過時間: 15 時間

菌名: *Staphylococcus aureus*

バイオコード: 77152100041

98% *Staphylococcus aureus*

1% *Staphylococcus hyicus*

報告待状態: なし

一同定試験に組み込まれた追加反応--

98% *Staphylococcus aureus*

1% *Staphylococcus hyicus*
表 4 迅速自動細菌検査装置 VITEK で用いたウェルの反応
ウエルカードには 30 個の小孔があり、各ウェルは生化学的要因と陰性コントロール培地がセットされている。表 4 に示すような結果に基づいて、コンピュータが判定することによって、迅速な細菌の同定が行われる。

各ウェルの反応
各ウェルにおける反応は、下表のとおりである。

<table>
<thead>
<tr>
<th>ウエル No.</th>
<th>培地</th>
<th>成分</th>
<th>反応</th>
<th>陽性</th>
<th>陰性</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ベプトンベース</td>
<td>ベプトン</td>
<td>腺増殖酸産生</td>
<td>青色</td>
<td>澄明</td>
</tr>
<tr>
<td>2</td>
<td>バシトラシン</td>
<td>バシトラシン</td>
<td>バシトラシン感受性</td>
<td>青色</td>
<td>澄明</td>
</tr>
<tr>
<td>3</td>
<td>オプトシン</td>
<td>オプトシン</td>
<td>オプトシン感受性</td>
<td>青色</td>
<td>澄明</td>
</tr>
<tr>
<td>5</td>
<td>6％塩化ナトリウム (6NC)</td>
<td>塩化ナトリウム</td>
<td>塩化ナトリウム耐性</td>
<td>青色</td>
<td>澄明</td>
</tr>
<tr>
<td>6</td>
<td>10％脳汁 (10B)</td>
<td>脳汁</td>
<td>脳汁耐性</td>
<td>青色</td>
<td>黄色</td>
</tr>
<tr>
<td>7</td>
<td>40％脳汁 (40B)</td>
<td>脳汁</td>
<td>脳汁耐性</td>
<td>青色</td>
<td>黄色</td>
</tr>
<tr>
<td>8</td>
<td>エスキリン</td>
<td>エスキリン</td>
<td>エスキリン加水分解</td>
<td>褐色-黒色</td>
<td>明るい黄色</td>
</tr>
<tr>
<td>9</td>
<td>脱水酸反応コントロール (ANC)</td>
<td>塩酸アルギニン</td>
<td>脱炭酸</td>
<td>—</td>
<td>青色</td>
</tr>
<tr>
<td>10</td>
<td>脱水酸反応コントロール (ARG)</td>
<td>塩酸アルギニン</td>
<td>脱炭酸</td>
<td>—</td>
<td>黄色-緑色</td>
</tr>
<tr>
<td>11</td>
<td>尿素</td>
<td>尿素</td>
<td>尿素分解</td>
<td>青色</td>
<td>黄色-緑色</td>
</tr>
<tr>
<td>12</td>
<td>テトラブリウムレッド</td>
<td>テトラブリウム塩</td>
<td>テトラブリウム塩還元</td>
<td>ピンク色-赤色</td>
<td>澄明</td>
</tr>
<tr>
<td>13</td>
<td>ノポピオシン</td>
<td>ノポピオシン</td>
<td>ノポピオシン耐性</td>
<td>青色</td>
<td>澄明-明るい青色</td>
</tr>
<tr>
<td>4</td>
<td>ヘミセルローズ</td>
<td>ヘミセルローズ</td>
<td>ヘミセルローズ耐性</td>
<td>青色</td>
<td>澄明-明るい青色</td>
</tr>
<tr>
<td>14</td>
<td>デキストロース</td>
<td>デキストロース</td>
<td>デキストロース耐性</td>
<td>青色</td>
<td>澄明-明るい青色</td>
</tr>
<tr>
<td>15</td>
<td>乳糖</td>
<td>乳糖</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>16</td>
<td>マンニトール</td>
<td>マンニトール</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>17</td>
<td>ラフィノース</td>
<td>ラフィノース</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>18</td>
<td>サリン</td>
<td>サリン</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>19</td>
<td>ソルビトール</td>
<td>ソルビトール</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>20</td>
<td>白糖</td>
<td>白糖</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>21</td>
<td>トレハロース</td>
<td>トレハロース</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>22</td>
<td>アラビノース</td>
<td>アラビノース</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>23</td>
<td>ピルビン酸塩</td>
<td>ピルビン酸塩</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>24</td>
<td>プルラン</td>
<td>プルラン</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>25</td>
<td>イヌリン</td>
<td>イヌリン</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>26</td>
<td>メリピオース</td>
<td>メリピオース</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>27</td>
<td>メレチトース</td>
<td>メレチトース</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>28</td>
<td>セロピオース</td>
<td>セロピオース</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>29</td>
<td>リポース</td>
<td>リポース</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>30</td>
<td>キシロース</td>
<td>キシロース</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

を 98％の確率で検出できることを示している。
図 2 は S. aureus の検出用 Baird Parker + RPF 腦別培地による培養結果である。細菌培養基「面」から採取した細菌の菌液を Baird Parker + RPF 培地に接種し、24 時間培養したものである。集落はすべて黑色を示すことから、病原性を有する S. aureus ではないことが明らかである（図 2）。さらに、集落上には S. aureus を鑑別できるハローは全く観察されないことであった（図 2）。
図 3 は東京医科歯科大学から分与された標準菌である病原性 S. aureus を同様に Baird Parker + RPF 鑑別
図 2 剣道防具「面」から検出された細菌を Baird Parker + RPF 培地で培養した
病原性黄色プドウ球菌 Staphylococcus aureus を鑑別するため、剣道防具「面」から分離された細菌を液体培地で培養した。次に、Baird Parker + RPF 培地を使用し当培地表面に塗布し、37℃の恒温器で
24～48 時間培養した。各菌の集落は黒色を示す。Staphylococcus aureus 集落特有の半透明のハローはみられず。したがって、剣道防具「面」からは鑑別培地を用いても S. aureus は分離されないことがわかる。RPF はウサギ血漿、牛由来フィブリノーゲンを示す。
図 3 　Baird Parker + RPF 培地に培養した Staphylococcus aureus
東京医科大県から分与された病原性黄色ブドウ球菌 Staphylococcus aureus を Baird Parker + RPF 培地に培養した。　集落は灰色を示し、培地上では半透明のハローを形成する。

考察
現在、病気の診断には原因となっている細菌などの微生物を同定することが重要であり、その作業は医学臨床検査分野の領域で行われているが。しかし、従来から用いられている定法による同定作業は、各種の試薬調製や培地の作成が煩雑であり、菌種決定までに長時間を要するのが実状である。そのため、細菌検査の分野では、近年自動化機器が使用されるようになってきた。現在、微生物同定の自動化装置は数種市販されているが、本研究で使用した Vitek AMS システムは、マグネル・ダグラス社（米国）により開発された装置である。本装置は、臨床材料や環境中から分離されたグラム陽性菌、グラム陰性桿菌、真菌の生化学的性状を、それぞれの微生物群に専用のテストカード（培地）で調べ、その結果を自動的にコンピュータに読みとりコード化する。そして得られたコードを装置に内蔵されているデータベースと照合させて、被検株の菌種を同定する（表 2,3）。本システムの特徴は同定できる菌種の種類が多く、判定時間が迅速で、短い場合には 4 時間で同定することができる。また、分離同定された細菌の薬剤感受性試験にも利用できる機能も備えている。

細菌は病原性から強毒菌と弱毒菌とに分類されている。現在、高度医療の進歩によって日和見感染症が頻発するようになってきた。例えば、臓器移植患者、エイズ患者（後天性免疫不全）に合併する感染症、副腎皮質ホルモン、抗ガン剤や免疫抑制剤で感染抵抗力の低下している患者は容易に弱毒菌感染の発生が起こるとされている。すなわち、健全人には病気を起こさないことが明らかに弱毒菌でも、抵抗力の弱ったヒトには感染することが報告されている。Staphylococcus, Pseudomonas, Corynebacterium や Fungi など多くの弱毒菌の感染が現在、社会問題になっている。
本研究は剣道防具「面」について、人体の各部位やヒトの生活環境、自然に広く分布しているグラム陽性球菌 Staphylococcus、和名ブドウ球菌に着目し、それらの発酵を試みるものである（表１〜３）。一般に、Staphylo-
coccus 属は化膿や食中毒を起こす病原性をもつ細菌として知られている１２, ２１, ２２。Staphylococcus aureus は毛囊炎や皮膚膿腫を起こす場合を含む。さらに、S. aureus は薬剤耐性菌である Methicillin-resistant Staphylococcus aureus (MRSA) と変異し、院内感染症の代表的な病原性感染菌として、また薬剤が効かない細菌として注目されている。主な MRSA 感染症は手術後の創傷感染、敗血症、菌血症や呼吸感染症などがある２１, ２３。これらは医療現場における抗菌性薬の不適切な使用が原因であり、高齢発症社会における医療問題の一つにあげられている２２, ２３。すなわち、S. aureus が食物中毒に至るブドウ球菌エタノールキシンを産生し、それを摂食することによって起こる急性胃腸炎である１２, ２２, ２４。一方、Staphylococcus 属はほとんどの弱毒菌であり、健康人には病原性を示さないが、細菌が抵抗性の低下しているヒトに特異的に感染症を起こす２２, ２４。すなわち、日和見感染症は、現在の高度医療技術によってもたらされ、その進歩に伴って将来ますます増加することが指摘されている２２, ２３。

1998 年、われわれの研究室では日本体育大学に新しく導入されることになった迅速自動細菌検査装置を用いて、大学剣道部学生が使用中の防具「面」類性の細菌検査を初めて明らかにした。すなわち、剣道防具「面」の細菌検査の中で、年間を通して高い頻度で同定された細菌は Staphylococcus 属であった。これらの菌を光学顕微鏡で観察すると菌体は球状で、いわゆるグラム染色をした特徴のある配列をしている。図 1 は Staphylococcus 属の中で最も高頻度で同定された S. saprophyticus 株の走査型電子顕微鏡像を示している。本菌の形態は球体で、複数個の菌の不規則な配列が良くわかる。図 1 の矢印は分裂中の S. saprophyticus 細胞を示す。

表１は防具「面」類性部から迅速自動細菌検査装置によって同定された Staphylococcus 属である。Staphy-
lococcus 属は年間を通して 11 種類が同定され、コアグラーテー反応はすべて陰性を示した。従来から用いられている定法による微生物同定作業は各種薬剤、化学反応、培地作成が複雑であり、さらに同定結果までは数週間から数カ月を要するのが実状であるが、今回、迅速自動細菌検査装置 VITEK で S. saprophyticus を同定するのに要した時間は極めて短く、15 分間であった。われわれは、このような迅速自動細菌検査装置を用いて、年間を通じて「面」から 11 種類の Staphylococcus 属を同定した。すなわち、S. saprophyticus, S. cohnii, S. hominis, S. simulans, S. epidermidis, S. warneri, S. haemolyticus, S. capitis, S. xylosus, S. sciuri, S. lentus が検出された。Staphylococcus 属の年間を通じて出現頻度の動態は春（3〜5月）から増加し、夏（6〜8月）には最も高く、秋から冬にかけて減少することが明らかになった。これらの結果から、防具「面」類性部から分離される Staphylococcus 属の菌種数は外気温の変動に依存していることが示唆される。「面」面を由来の Staphylococcus 属のコアグラーテー試験はすべて陰性を示すことが判った。Staphylococcus saprophyticus は和名では腐敗性ブドウ球菌、Staphylococcus epidermidis は表皮白色ブドウ球菌とよばれ、コアグラーテー陰性の代表的な日和見感染菌として、ますます多くの関心が寄せられている１３, ２０, ２７。これらの細菌は S. aureus と比較し、病原性は著しく弱いかと尿路感染症や呼吸器疾患の起因菌であることが報告されている２０。

Staphylococcus epidermidis は医療器具用のプラスチックに特異的に付着することが報告されており、医療器具による体内への移入が問題になっている２０。いずれも院内感染や日和見感染の原因菌となり、臨床選で無視できない菌種として議論されている２０, ２２, ２３。同じように S. saprophyticus, S. cohnii や S. hominis などヒトに対する感染に関して重要な意義があると考えられている２２, ２３。Staphylococcus 属以外に、剣道防具「面」から検出された主な細菌は Bacillus 属、Flavimonas 属、Chryseomonas 属、Actinobacillus 属、Stenotrophomonas 属、Corynebacterium 属、Com-
amonas 属、Flavobacterium 属、Pasteurella 属、Panto
tea 属、Pseudomonas 属、Vibrio 属、Eikenella 属、Sphin
gobacterium 属や Acinetobacter 属などが分離同定された（投稿準備中、１９９９）。

これらの細菌の中に、わが国で細菌性食中毒のうち、二番目に多い腸炎ビブリオの起因菌であり、強い病原性を有する Vibrio parahaemolyticus (腸炎ビブリオ菌) が分離されている。本菌は海水中に生息し、病原性好塩として広く知られている。今回同定「面」から検出された V. parahae-
molyticus は夏季に限定されている「面」から分離される V. parahaemolyticus については「面」との関連性が重要な研究課題を考える。現在、Vibrio 属による汚染経路やその疫学等については、いまだ多くの謎が残されている。

Staphylococcus 属の菌種のなかでは、菌体最も病原性が強い２０, ２３。先に述べた
ように、本菌は化膿性感染症や食中毒の原因菌としてよく知られ、コアグラーゼ試験は陽性を示す。本研究では迅速自動細菌検査装置で「面」の細菌叢に _S. aureus_ が同定されなかった事実を確かめることに有するため、「面」から採取されたすべての細菌の菌液を作成し、_S. aureus_ 鑑別培地 Baird Parker + RPF で培養試験を行った。表 2、3 は今回の「面」から高頻度で分離された _S. saprophyticus_ と、標準株である病原性黄色ブドウ球菌 _S. aureus_ について迅速自動細菌検査装置 Vitek で、カードタイプGPI を用いて得られたウエル反応の結果である。表 4 はウエルの判別基準を示し、当反応はコンピュータによって自動的に分析された（表 2, 3)。標準株 _S. aureus_ の同定時間が _S. saprophyticus_ と同様に 15 時間であった。表 3 では、迅速自動細菌検査装置 Vitek による _S. aureus_ の同定確率は 98% を示している。図 2, 3 は _S. saprophyticus_ と _S. aureus_ についての鑑別 Baird Parker + RPF 培地による結果である。剣道防具「面」から採取した細菌の菌液を作成し、Baird Parker + RPF 培地に塗布し、24 時間、37℃の恒温器で培養したものである。図 2 の集落にはハロー形態は全く観察しないことが分かる。したがって、_S. aureus_ は鑑別培地上で検出されない（図 2)。この結果は迅速自動細菌検査装置での判定と普通培地上の集落の色彩やカオラーゼ試験との明らかな整合性がみられる。図 3 は東京医科大学から分与された標準菌 _S. aureus_ を Baird Parker + RPF 培地に塗布し、24 時間培養したものの、_Staphylococcus aureus_ の標準菌は灰色で菌体には鮮明なハローが観察される。以上の結果を総合すると、今回の実験では、剣道防具「面」由来の _S. aureus_ は分離されなかったことがわかった。すなわち、_S. aureus_ は「面」類部領域から年間を通しての調査から同定されなかった。しかし、今回の剣道「面」類部からの試料採取を、20 名の学生について 1997 年 11 月から 1998 年 10 月までの 1 年間に得られた結果であり、採取部位も類部に限られており、感染に結論を導くことは危険であろうと思われる。剣道防具「面」の細菌叢は練習による「面」の使用度数、「面」管理状態、試料採取数などによって変化が生じ得る可能性がある。したがって、今後これらの変動要因を的確に把握しながら、「面」の細菌汚染の状況を継続的に観察する必要があると考えている。剣道防具は一般的に汚染していないため、防具の衛生管理は極めて重要である。現在、医療の進歩速度の進歩によって現れてきたブドウ球菌感染症、すなわち日和見感染症は増加の一途をたどっている(2, 29)。今後、剣道防具「面」における細菌汚染の実態が継続的に把握できれば初めの基礎データとなり、「面」の衛生管理や日和見感染症の防止対策策定にも役立つものとなるであろう。結 語

本研究は剣道防具「面」について、人体の各部位や自然界に広く分布し日和見感染、化膿性疾患や食中毒の起因菌として注目されているグラム陽性球菌 _Staphylococcus_ 属を着目し、迅速自動細菌検査装置により、それらの同定を試みたものである。その結果、「面」の類部領域から年間を通して、11 種の _Staphylococcus_ が検出された。すなわち、_S. saprophyticus, S. cohnii, S. hominis, S. simulans, S. epidermidis, S. warneri, S. haemolyticus, S. capsitis, S. xylosus, S. sciuri, S. lentus_ を検出した。これらの _Staphylococcus_ 属はすべてコアグラーゼ試験陽性を示した。一方、年間を通しての研究結果から、多彩な感染症や食中毒を起こすことが知られている病原性黄色ブドウ球菌 _S. aureus_ は、剣道防具「面」の類部領域から分離されないことが初めて明らかになった。

謝 謝

貴重なご助言を戴いた衛生学公衆衛生学研究室および健康管理センター所長 伊藤 孝教授に厚く御礼申し上げます。

本研究の一部は 1999 年度文部省科学研究 C および日本私学振興財団の援助によって行われた。

引用文献

1) 古田裕子、小早川ゆり、大本洋綾、浜田元輔、清原伸彦、青木茂治、江原友子、長軸哲治、大和真：教育環境の細菌学的調査への迅速自動細菌検査装置の応用、日本体育大学紀要、26, 261-265 (1997).

2) 古田裕子、小早川ゆり、浜田元輔、清原伸彦、長軸哲治、青木茂治、大和真：教育環境における細菌学的調査：日本体育大学プール水に含まれる細菌叢、日本体育大学紀要、27, 279-286 (1998).

3) 古田裕子、桑谷伸一、青木茂治、久和彰江、小早川ゆり、浜田元輔、清原伸彦、長軸哲治、大和真：迅速自動細菌検査装置の応用による健常学生口腔腔細菌の研究、日本体育大学紀要、27, 269-278 (1998).


5) 田園俊彦：剣道防具の衛生に関する研究。——高校剣道部員の「面」類部の細菌数について、武道学研究 (別冊)、26, 41 (1996).

6) 石毛徹也、柳 かおり、長軸哲治、八木澤誠、柿田大蔵、志沢邦夫：迅速自動細菌検査装置に
よる剣道防具からの細菌の同定、日本体育学会第49回大会、愛媛大学 (1998).
7) 伊藤文恵：剣道具「面」から分離される細菌・真菌と消毒剤の効果、日本体育大学修士論文 (1996).
8) 田中和幸、吉田裕子、長松哲雄、茂木茂、菅田大蔵、志賀邦夫：教育環境における細菌学的調査 I、剣道防具に関する研究、日本体育学会東京支部第26回大会、国士舘大学 (1999).
9) 大根容子、佐藤延子、伊藤一陽：VITEK AMS GPIカードとモノクローナル抗体の使用によるグラム陽性球菌の迅速同定システム、臨床微生物迅速診断研究会誌 1, 65-72 (1988).
10) 山根誠久：細菌の分離同定の自動化、臨床病理、33, 875-883 (1985).
12) 宮澤七郎、相原 煙 (監修)：電子顕微鏡と周辺機器、医学出版センター (1994).
13) 天児和暢、南嶋洋一 (編集)：戸田新細菌学、第31版、南山堂 (1997).
14) 坂崎利一 (編集)：図解臨床細菌検査、文光堂 (1992).
15) 山根誠久、加藤仁美：自動検査装置 AMS-EBA カードによる腸内細菌同定の検討、臨床と細菌、10, 327-336 (1983).
25) 田中和幸、長松哲雄、茂木茂、菅田大蔵、志賀邦夫：迅速自動検査同定装置を応用した剣道防具の細菌叢の研究：「面」に由来する細菌の同定 (投稿準備中)。